Regioselective B-H/C-H Activation and Metal-Metal Bond Formation
Induced by Half-Sandwich Metals Complexes at Hydroxy-
Substituted 0-Carboranes
Shu-Ting Guo, Peng-Fei Cui, Yang Gao and Guo-Xin Jin*
Shanghai Key Laboratory of Molecular Catalysis and Innovative Material,Collaborative Innovation Center of Chemistry for Energy Materials, Department ofChemistry, Fudan University, Shanghai 200433, P. R. China.
*E-mail: gxjin@fudan.edu.cn.
Contents

1. Experimental details 1-2
2. NMR spectra 3-8
3. ESI-MS spectra 9-12
4. X-ray crystallography details 13-14
5. References 15

Experimental details:

General Procedures.

All reactions were conducted under an atmosphere of dry, oxygen-free nitrogen using standard Schlenk techniques. The materials $\left[\mathrm{Cp}^{*} \mathrm{MCl}_{2}\right]_{2}(\mathrm{M}=\mathrm{Ir}$ and Rh$),{ }^{1}$ (2-pyridine) $(o$ carboranyl)methanol ligand ${ }^{2}$ and o-carboranylmethanol ${ }^{3}$ were prepared according to literature methods. Nondeuterated solvents were dried and distilled under N_{2} from appropriate drying agents. All other chemicals were purchased from readily available commercial sources and used without further purification. ${ }^{1} \mathrm{H}$ NMR spectra and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AVANCE I 400 and AVANCE NEO 400 Spectrometers. Spectra were recorded at room temperature and referenced to the residual protonated solvent for NMR spectra. Proton chemical shift ($\delta \mathrm{H}=7.26$ $\left.\left(\mathrm{CDCl}_{3}\right)\right)$ and $\left(\delta \mathrm{C}=77.16\left(\mathrm{CDCl}_{3}\right)\right)$ are reported relative to the solvent residual peak. Coupling constants are expressed in Hertz. ${ }^{11} \mathrm{~B}$ NMR (160 MHz) spectra were recorded with a Bruker AVANCE III HD spectrometer. Complex multiplets are noted as " m " and broad resonances as "br". Elemental analyses were performed on an Elementar Vario EL III analyzer. IR spectra (KBr tablets) in the range $400-4000 \mathrm{~cm}^{-1}$ were measured on a Nicolet AVATAR-360IR spectrometer. Mass spectra were obtained with a Micro TOF II mass spectrometer using electrospray ionization. X-ray diffraction data were collected on a CCD-Bruker SMART APEX system.

NMR spectra:

Figure S1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) of $\mathbf{3}$.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) of $\mathbf{3}$.

$\stackrel{F}{9}$

Figure S3: ${ }^{11} \mathrm{~B}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ of $\mathbf{3}$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) of 4.

Figure S5. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ of 4 .

ત్రి	$\begin{aligned} & \infty \\ & \stackrel{\infty}{+} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { + } \\ & \text { N } \end{aligned}$		-

Figure S6. ${ }^{11} \mathrm{~B}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ of $\mathbf{4}$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) of 5.

$$
\begin{aligned}
& \stackrel{6}{\square}
\end{aligned}
$$

Figure S8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) of 5 .

$\stackrel{+}{\infty}$

Figure S9. ${ }^{11} \mathrm{~B}$ NMR $(160 \mathrm{MHz}, \mathrm{CDCl} 3, \mathrm{ppm})$ of $\mathbf{5}$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) of $\mathbf{6}$.

Figure S11. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) of $\mathbf{6}$.

Figure S12. ${ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) of $\mathbf{6}$.

ESI-MS spectra:

Figure S13. Experimental (top) and theoretical (bottom) ESI-MS spectra of complex 3

Figure S14.Experimental (top) and theoretical (bottom) ESI-MS spectra of complex 4

Figure S15. Experimental (top) and theoretical (bottom) ESI-MS spectra of complex 5

Figure S16.Experimental (top) and theoretical (bottom) ESI-MS spectra of complex 6.

X-ray crystallography details:

Single crystals of 3, 4, 5 and $\mathbf{6}$ suitable for X-ray diffraction study were obtained at low temperature. X-ray intensity data of $\mathbf{3}, \mathbf{4}, \mathbf{5}$ and $\mathbf{6}$ were collected on a CCD-Bruker SMART APEX system.

Table S1. Crystal data for complexes $\mathbf{3 , 4 , 5}$ and 6 .

Final $\quad \mathrm{R}$	indices	$\mathrm{R} 1=0.0338, \mathrm{wR} 2=$	$\mathrm{R} 1=0.0358, \mathrm{wR} 2=$	$\mathrm{R} 1=0.0352, \mathrm{wR} 2=1.100$
$[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$	0.0809	0.0921	0.0896	
R indices (all data)	$\mathrm{R} 1=0.0353, \mathrm{wR} 2=$	$\mathrm{R} 1=0.0456, \mathrm{wR} 2=$	$\mathrm{R} 1=0.0385, \mathrm{wR} 2=\mathrm{R} 1=0.0448, \mathrm{wR} 2=$	
	0.0819	0.0979	0.0921	0.1325

$\alpha: \mathrm{R}_{1}=\Sigma| | F_{0}\left|-\left|F_{c}\right|\right| \Sigma\left|F_{0}\right|$ (based on reflections with $F_{0}^{2}>2 \sigma F^{2}$). $w \mathrm{R}_{2}=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{0}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{0}{ }^{2}\right)^{2}\right]\right]^{1 / 2}$;
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.095 P)^{2}\right] ; \mathrm{P}=\left[\max \left(\mathrm{F}_{0}^{2}, 0\right)+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right] / 3\left(\mathrm{~F}_{0}^{2}>2 \sigma \mathrm{~F}^{2}\right)$.

Reference:

1. C. White, A. Yates and P. M. Maitlis, Inorg. Synth., 1992, 29, 228.
2. F. D. Salvo, B. Camargo, Y. García, F. Teixidor, C. Viñas, J. G. Planas, M. E. Light and M. B. Hursthouse, Crystengcomm, 2011, 13, 5788-5806.
3. F. A. Gomez, S. E. Johnson and M. F. Hawthorne, J. Am. Chem. Soc., 1991, 113, 59135914.
