Supplementary Information

Microwave-Assisted Mass Synthesis of Mo_{1-x}W_xS₂ Alloy Composites

with Tunable Lithium Storage Property

Jianhui Li, ^{a#} Haiting Yan, ^{a#} Wei Wei ^{*a} and Lingjie Meng ^{*ab}

Figure S1. SEM (a, c, e, g) and TEM (b, d, f, h) images of $Mo_{1-x}W_xS_2$ (x=0, 0.1, 0.2, and 0.3) alloy nanoflowers, respectively.

Figure S2. SEM (a, c, e, g) and TEM (b, d, f, h) images of $Mo_{1-x}W_xS_2$ (x=0.4, 0.5, 0.8, and 1) alloy nanoflowers, respectively.

Figure S3. (a) TEM image of $Mo_{0.4}W_{0.6}S_2$ alloy nanoflowers and the corresponding EDS elemental mapping images of (b) molybdenum, (c) tungsten, (d) sulfur, and carbon.

Figure S4. (a) TEM image of MoS_2 nanoflowers and the corresponding EDS elemental mapping images of (b) molybdenum and (c) sulfur. (d) TEM image of WS_2 nanoflowers and the corresponding EDS elemental mapping images of (e) tungsten and (f) sulfur.

Figure S5. (a) XPS spectra of MoS_2 nanoflowers and broad-scan spectra of (b) Mo 3d and (c) S 2p. (d) XPS spectra of WS_2 nanoflowers and broad-scan spectra of (e) W 4f and (f) S 2p.

Figure S6. (a) Conductivity of $Mo_{1-x}W_xS_2$ (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, and 1) alloy nanoflowers. (b) Rate performance of $Mo_{1-x}W_xS_2$ alloy nanoflowers anodes at different current densities.

Figure S7. (a) CV curves of MoS_2 nanoflowers and (b) CV curves of WS_2 nanoflowers.