Electronic Supporting Information (ESI) for Dalton Transactions

2018

Influence of the substituent on the phosphine ligand in novel rhenium (I) aldehydes. Synthesis, computational studies and first insights into antiproliferative activity

<u>Michelle Muñoz-Osses</u>^a, Daniel Siegmund^d, Alejandra Gómez^a, Fernando Godoy^{a, *}, Angélica Fierro^c, Leonel Llanos^b, Daniel Aravena^b and Nils Metzler-Nolte^{d, *}

^a Laboratory of Organometallic Chemistry, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363. Estación Central. Santiago. Chile. E-mail: <u>michelle.munoz@usach.cl</u>; <u>fernando.godoy@usach.cl</u>; <u>alejandra.gomezs@usach.cl</u>

^b Laboratory of Computational Inorganic Chemistry, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363. Estación Central. Santiago. Chile. E-mail: <u>leonel.llanos@usach.cl</u>; <u>daniel.aravena.p@usach.cl</u>

^c Laboratory of Molecular Simulation, Department of Organic Chemistry, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. E-mail: <u>afierroh@uc.cl</u>

^d Inorganic Chemistry I – Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44797 Bochum, Germany. E-mail: <u>nils.metzler-nolte@rub.de</u>; <u>daniel.Siegmund@ruhr-uni-bochum.de</u>

Index

Experimental Section:

- 1. Synthesis and characterization of novel rhenium (I) dicarbonyl phosphine aldehydes.
 - a) NMR Spectrum of **2a-2c** compounds.
 - b) Electrochemical studies
 - c) Computational studies of rhenium (I) derivatives.
- 2. Cytotoxic studies of the new compounds in two cancer cell lines: HT-29 and PT-45.
- 1. Novel Rhenium dicarbonyl phosphine aldehydes $[(\eta^5-C_5H_4CHO)Re(CO)_2PR_3]$.
 - a) NMR Spectra
- a.1. Synthesis of [(η^{5} -C₅H₄CHO)Re(CO)₂PMe₃] (2a)

Figure S1. ¹H-NMR spectra (400 MHz) of a solution of **2a** (40 mM) in CDCl₃ at 298 K.

Figure S2. ¹³C-NMR spectra (400 MHz) of a solution of 2a (80 mM) in CDCl₃ at 298 K.

Figure S3. ESI-MS in CH₃CN of 2a (1mg/ml).

a.2. Synthesis of [(η^{5} -C₅H₄CHO)Re(CO)₂PPh₃] (2b)

Figure S4. ¹H-NMR spectra (400 MHz) of a solution of **2b** (40 mM) in CDCl₃ at 298 K.

Figure S5. ¹³C-NMR spectra (400 MHz) of a solution of 2b (80 mM) in CDCl₃ at 298 K.

Figure S6. ESI-MS in CH_3CN of 2b (1mg/ml).

a.3. Synthesis of [(η^{5} -C₅H₄CHO)Re(CO)₂PCy₃] (2c)

Figure S7. ¹H-NMR spectra (400 MHz) of a solution of 2c (40 mM) in CDCl₃ at 298 K.

Figure S8. ¹³C-NMR spectra (400 MHz) of a solution of 2c (80 mM) in CDCl₃ at 298 K.

Figure S9. ESI-MS in CH₃CN of 2c (1mg/ml).

b) Electrochemical studies

Figure S10. Cyclic voltammetry of phosphine derivatives **1** and **2a-c** (1mM), in dry CH_3CN using Bu_4NPF_6 (0.1 M) as the supporting electrolyte, at a scan rate of 100 mV/s.

c) Computational studies

<u>Table S1</u>: Experimental and calculated (DFT) frequencies vCO (cm⁻¹) of the symmetric and asymmetric stretching of the organometallic carbonyl ligand of each complex.

Compounds	Experimental	Calculated
1	2033, 1940	2048, 1944
2a	1935, 1867	1944, 1854
2b	1942, 1876	1957, 1872
2c	1928, 1860	1939, 1852

Compounds	Re-P (Å)
2a	2.36409
2b	2.36168
2c	2.40032

Figure S11. Experimental UV-Vis spectrum (black line) and electronic transitions (red bars) obtained for TD-DFT calculations of the complex **2a.**

Figure S12. Experimental UV-Vis spectrum (black line) and electronic transitions (red bars) obtained for TD-DFT calculations of the complex **2b.**

Figure S13. Experimental UV-Vis spectrum (black line) and electronic transitions (red bars) obtained for TD-DFT calculations of the complex **2c.**

Figure S14. Calculated frontier orbitals of the complex 2a.

Figure S15. Calculated frontier orbitals of the complex 2b.

Figure S16. Calculated frontier orbitals of the complex 2c.

Figure S17. Experimental UV-Vis of 10^{-4} M solutions of **1**, **2a-c** complexes in CH₃CN at 298 K.

2. Cytotoxicity studies

Figure S18. Biological Evaluation of 2b in HT-29.

Figure S19. Biological Evaluation of 2b in PT-45.