Supporting Information

In-suit Growth of Ultrathin *Fcc*-NiPt Nanocrystals on Graphene for Methanol and Formic Acid Oxidation

Liu Lin^{*a*}, Mengwei Yuan^{*a*}, Zemin Sun^{*a*}, Huifeng Li^{*a*}, Caiyun Nan^{*a*}, Genban Sun^{*a,b,**}, and Shulan Ma^{*a*}

^aBeijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China

^bDepartment of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083, China

Fig. S1 XRD patterns of NiPt/GN, Ni₃Pt/GN and NiPt₃/GN nanocomposites.

Fig. S2 TGA curves of NiPt/GN, Ni₃Pt/GN and NiPt₃/GN nanocomposites.

Fig. S3 (a) HAADF-STEM image and (b-c) EDS mapping of Pt and Ni elements of NiPt nanoparticles.

Fig. S4 (a) TEM and (b) HRTEM images of Ni₃Pt/GN nanocomposite. (c) HAADF-STEM image and (d–f) EDS mapping of Pt, Ni and C elements of Ni₃Pt/GN nanocomposites. (g) TEM and (h) HRTEM images of NiPt₃/GN nanocomposites. (i) HAADF-STEM image and (j–l) EDS mapping of Pt, Ni and C elements of NiPt₃/GN nanocomposites.

Fig. S5 XPS spectra of Ni_3Pt/GN and $NiPt_3/GN$ nanocomposites. (a) C 1s, (b) Pt 4f and (c) Ni 2p spectrum.

Fig. S6 Mass current density of the NiPt/GN, Ni₃Pt/GN and NiPt₃/GN nanocomposite electrodes in (a) the mixture of 0.5 M NaOH + 1 M methanol solution at 50 mV s⁻¹ and (b) the mixture of 0.5 M H₂SO₄ + 0.5 M HCOOH solution at 50 mV s⁻¹, respectively.

Fig. S7 (a) CVs of commercial Pt/C electrodes in 0.5 M NaOH + 1 M methanol solution, (b) The forward peak currents of commercial Pt/C as a function of the cycle

number for the methanol oxidation.

Fig. S8 (a) CVs of commercial Pt/C electrodes in 0.5 M $H_2SO_4 + 0.5$ M HCOOH solution, (b) Current-time curves recorded in mixture of 0.5 M $H_2SO_4 + 0.5$ M HCOOH solution at the working potential of 0.4 V.

Fig. S9 CVs of the GN electrodes in (a) 0.5 M NaOH + 1 M methanol solution, (b) $0.5 \text{ M H}_2\text{SO}_4 + 0.5 \text{ M HCOOH solution at 50 mV s}^{-1}$.

Fig. S10 CO stripping voltammograms of NiPt/GN, NiPt and commercial Pt/C at scan rate of 50 mV s-1.

Fig. S11 TEM images of NiPt/GN nanocomposite. (a) before and (c) after 900 cycles in 0.5 M NaOH + 1 M methanol solution. SEM-EDX spectrums of the NiPt/GN (b) before and (d) after 900 cycles in 0.5 M NaOH + 1 M methanol solution.

Table S1. Ni/Pt Atom Rate Investigated by ICP			
sample	Pt (mol)	Ni (mol)	

NiPt	0.27	0.26
NiPt/GN	0.28	0.30
Ni ₃ Pt/GN	0.14	0.47
NiPt ₃ /GN	0.50	0.17

Table S2. Current	density of different	catalysts for L)MFC
-------------------	----------------------	-----------------	------

Catalyst	Current density	reference
	$(mA cm^{-2})$	
NiPt/GN	41.1	This work
Pt/NS-G ^a	11.1	Ref. S1
Pt/G_3 -(CN) ₇ ^b	15.7	Ref. S2
Pt/G	9.1	
Au@Pt PNPs ^c	26.05	Ref. S3
THH Pt-Ni NFs/C ^d	2.19	Ref. S4
Mesoporous PtPd NPs	1.15	Ref. S5
Concave Pt-Co	3.62	Ref. S6
Amorphous CuPt	7.8	Ref. S7
Octahedra Pt _{2.3} Ni/C	1.46	Ref. S8
CMK-3-Pd/SnO ₂	7.81	Ref. S9
CMK-3–Pt	1.78	Ref. S10

^a Pt nanoparticles on nitrogen and sulfur codoped graphene

^b Pt nanoparticles on both graphene and g-C₃N₄ nanosheets

^c The popcorn-like Au@Pt nanocrystals

^d Tetrahexahedral Pt–Ni nanocrystals on C

REFERENCES

- H. Huang, J. Zhu, W. Zhang, C. S. Tiwary, J. Zhang, X. Zhang, Q. Jiang, H. He, Y. Wu, W. Huang,
 P. M. Ajayan and Q. Yan, *Chem. Mater.*, 2016, 28, 1737-1745.
- 2 H. Huang, S. Yang, R. Vajtai, X. Wang and P. M. Ajayan, Adv. Mater., 2014, 26, 5160-5165.
- 3 Y. Zhang, X. Li, K. Li, B. Xue, C. Zhang, C. Du, Z. Wu and W. Chen, ACS Appl. Mater. Interfaces, 2017, 9, 32688-32697.
- 4 J. Ding, L. Bu, S. Guo, Z. Zhao, E. Zhu, Y. Huang and X. Huang, Nano Lett., 2016, 16, 2762-2767.
- 5 P. Qiu, S. Lian, G. Yang and S. Yang, Nano Res., 2016, 10, 1064-1077.
- 6 Y. Ma, L. Yin, T. Yang, Q. Huang, M. He, H. Zhao, D. Zhang, M. Wang and Z. Tong, ACS Appl. Mater. Interfaces, 2017, 9, 36164-36172.
- 7 Y. Zhao, J. Liu, C. Liu, F. Wang and Y. Song, ACS Catal., 2016, 6, 4127-4134.
- 8 J. E. Sulaiman, S. Zhu, Z. Xing, Q. Chang and M. Shao, ACS Catal., 2017, 7, 5134-5141.
- L. Nan, Z. Fan, W. Yue, Q. Dong, L. Zhu, L. Yang and L. Fan, J. Mater. Chem. A, 2016, 4, 8898-8904.
- 10 L. Nan, W. Yue and Y. Jiang, J. Mater. Chem. A, 2015, 3, 22170-22175.