Supporting Information

Synthesis of bi-metallic complexes bridged 2,6-bis(benzimidazol-2yl) pyridine derivatives and their catalytic properties in transfer hydrogenation

Salih Günnaz*, a Aytaç Gürhan Gökçe, b Hayati Türkmen*a

^a Ege University, Department of Chemistry, 35100 Izmir, Turkey.

E-mail: salih.gunnaz@ege.edu.tr, hayatiturkmen@hotmail.com

^b Adnan Menderes University, Department of Physics, 09010 Aydın, Turkey.

Contents

	Page No.
1- ¹ H NMR of 1a in DMSO-d ₆	6
2- ¹³ C NMR of 1a in DMSO-d ₆	6
3- ¹ H NMR of 1a in CDCl ₃	6
4- ¹ H NMR of 1b	7
5- ¹³ C NMR of 1b	7
6- DEPT-135 of 1b	7
7- ¹ H NMR of 1c	8
8- ¹³ C NMR of 1c	8
9- ¹ H NMR of 1d	9
10- ¹³ C NMR of 1d	9
11- ¹ H NMR of 2a in DMSO-d ₆	10
12- ¹³ C NMR of 2a in DMSO-d ₆	10
13- ¹ H NMR of 2a in CDCl ₃	10
14- ¹ H NMR of 2b	11
15- ¹³ C NMR of 2b	11
16- ¹ H NMR of 2c	12
17- ¹³ C NMR of 2c	12
18- ¹ H NMR of 2d	13
19- ¹³ C NMR of 2d	13
20- DEPT-135 NMR of 2d	13
21- HMQC NMR of 2d	14
22- HMBC NMR of 2d	14
23- ¹ H NMR of 3a	15
24- ¹ H NMR of 3b	16
25- ¹³ C NMR of 3b	16

26- HSQC NMR of 3b	16
27- ¹ H NMR of 3c	17
28- ¹³ C NMR of 3c	17
29- HSQC NMR of 3c	17
30- ¹ H NMR of 3d	18
31- ¹³ C NMR of 3d	18
32- HSQC NMR of 3d	18
33- ¹ H NMR of 4a	19
34- ¹ H NMR of 4b	20
35- ¹³ C NMR of 4b	20
36- HSQC NMR of 4b	20
37- ¹ H NMR of 4c	21
38- ¹³ C NMR of 4c	21
39- HSQC NMR of 4c	21
40- ¹ H NMR of 4d	22
41- ¹³ C NMR of 4d	22
42- HSQC NMR of 4d	22
43- ¹ H NMR of 5a	23
44- ¹ H NMR of 5b	24
45- ¹³ C NMR of 5b	24
46- ¹ H NMR of 5c	25
47- ¹³ C NMR of 5c	25
48- ¹ H NMR of 5d	26
49- ¹³ C NMR of 5d	26
50- HSQC NMR of 5d	26
51- ¹ H NMR of 6a	27
52- ¹ H NMR of 6b	28

53- ¹³ C NMR of 6b	28
54 - ¹ H NMR of 6 c	29
55- ¹³ C NMR of 6c	29
56- ¹ H NMR of 6d	30
57- ¹³ C NMR of 6d	30
58- DEPT-135 NMR of 6d	30
59- COSY NMR of 6d	31
60- HMQC NMR of 6d	31
61- HMBC NMR of 6d	32
62- ¹ H NMR of 7	33
63- ¹³ C NMR of 7	33
64- ¹ H NMR of 8	34
65- ¹³ C NMR of 8	34
66- ¹ H NMR of 9	35
67- ¹³ C NMR of 9	35
68- ¹ H NMR of 9'	36
69- ¹³ C NMR of 9'	36
70- IR of 9'	36
71- ¹ H NMR of 6d'	37
72- ¹³ C NMR of 6d'	37
73- IR of 6d'	37
74- ¹ H NMR of 10 in CDCl ₃	38
75- ¹ H NMR of 10 in DMSO	38
76- ¹³ C NMR of 10	39
77- ¹ H NMR of 11 in CDCl ₃	40
78- ¹ H NMR of 11 in DMSO	40
79- ¹³ C NMR of 11	41

80- ¹ H NMR of 12 in CDCl ₃	42
81- ¹ H NMR of 12 in DMSO	42
82- ¹ H NMR of 13 in CDCl ₃	43
83- ¹ H NMR of 13 in DMSO	43
84- X-Ray crystallographic data of 3d	44

 $3^{-1}H$ NMR of **1a** in CDCl₃

5- ¹³C NMR of **1b**

7- ¹H NMR of **1c**

11- ¹H NMR of **2a** in DMSO-d₆

14- ¹H NMR of **2b**

16- ¹H NMR of **2c**

20- DEPT-135 NMR of **2d**

21- HMQC NMR of 2d

23- ¹H NMR of **3a**

24- ¹H NMR of **3b**

33- ¹H NMR of **4a**

80 70 f2 (ppm)

60 50 40

90

110 100

150 140

130 120

-12

0

20 10

30

43- ¹H NMR of **5a**

44- $^1\mathrm{H}$ NMR of $\mathbf{5b}$

46- ¹H NMR of **5c**

48- ¹H NMR of **5d**

51- ¹H NMR of **6a**

52- ¹H NMR of **6b**

54- ¹H NMR of **6c**

56- ¹H NMR of **6d**

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

59- COSY NMR of 6d

60- HMQC NMR of 6d

61- HMBC NMR of 6d

62- ¹H NMR of **7**

63- ¹³C NMR of **7**

64- ¹H NMR of **8**

66- ¹H NMR of **9**

67- ¹³C NMR of **9**

68- ¹H NMR of **9'**

69- ¹³C NMR of **9'**

70- IR of **9'**

71- ¹H NMR of **6d'**

73- IR of **6d'**

74- ¹H NMR of **10** in $CDCl_3$

76- ¹³C NMR of **10**

77- ¹H NMR of **11** in $CDCl_3$

79- ¹³C NMR of **11**

80- ¹H NMR of **12** in $CDCl_3$

82- ¹H NMR of **13** in $CDCl_3$

84- X-Ray crystallographic data of 3d

The crystallographic data and structure refinement summary for SGN4Rh are tabulated in Table S1. The intra- and intermolecular interactions are given in Table S2. As shown in Fig. S1, an intramolecular interaction of C3-H3-··Cl1 generates six-membered ring, producing *S*(*6*) hydrogen ring motif. There are two intermolecular C-H·· π type interactions in the crystal structure. In the first interaction, the solvent molecules interact with the molecule through a C-H·· π interaction between a dichloromethane C atom and a six-membered ring component of the benzimidazole ring system (Fig. S2a). The second one is observed between C14 atom of the COD ring in the molecule at (*x*, *y*, *z*) and the pentamethylbenzyl ring (C21-C26) in the molecule at (*x*, *1*-*y*, *1*/2+*z*), as shown in Fig. S2b. In addition, there are two C-H···Cl type intermolecular interactions. As shown in Fig. S3, atoms C18 and C40 in the molecule at (*x*, *y*, *z*) act as C-H···Cl hydrogen-bond donors to the Cl3 atom in the molecule at (*-x*, *1*-*y*, *1*-*z*) and the Cl1 atom in the molecule at (*x*, *-1*+*y*,*z*), respectively, leading to a centrosymmetric R₄⁴(16) dimer.

Formula	C ₆₁ H ₇₃ Cl ₆ N ₅ Rh ₂
Colour/shape	Yellow/ Plate
M _r	1294.76
Crystal system, space group	Monoclinic, C12/c1
Unit cell parameters	a=26.8865(12)Å,
	b=10.0794(4)Å,
	c=23.4752(15)Å,
	β=110.681(6)°
$V(A^3)$	5951.8(5)
Z	4
F(000)	2664
$D_x (Mg.m^{-3})$	1.445
$\mu (mm^{-1})$	0.866
т (° <i>К</i>)	293
$\theta_{min}/\theta_{max}$ (°)	3.0/29.2
No. of measured/unique/observed reflections	15414/6812/4524
$\theta_{min}, \theta_{max}$ (°)	3.0, 29.2
R(int)	0.0268
h = min to max	-36 to 32
k = min to max	-12 to 12
l = min to max-	-18 to 29
No. of reflections/parameters/restrains	6,812/338/0
GOOF on F^2	0.992
R indices [I >2σ(I)]	$R_1 = 0.0448$, $wR_2 = 0.1010$
R indices (all data)	$R_1 = 0.0820, wR_2 = 0.1165$
$\Delta \rho_{max}$, $\Delta \rho_{min} (e \text{\AA}^{-3})$	0.581, -0.581

Table S1. Crystallographic data and structure refinement summary for SGN4Rh.

D-H···A	Н…А	D····A	∠ D-H A	
C3-H3Cl1	2.82	3.6424(2)	149	
C40-H40B…Cg1	2.38	3.3416(2)	174	
C14-H14A…Cg2 ⁱⁱ	2.90	3.7316(2)	144	
C18-H18B…Cl3 ⁱⁱⁱ	2.80	3.5749(2)	138	
C40-H40A…Cl1 ^{iv}	2.52	3.4855(2)	176	

Table S2. Intra- and intermolecular interaction geometry (Å, °).^{*}

^{*}Cg1 and Cg2 are the centroids of the C5-C10 and C21-C26 rings, respectively. Symmetry codes: (ii) x, 1-y, 1/2+z, (iii) -x, 1-y, 1-z, (iv) x, -1+y, z.

Figure S1. The molecular structure of **3d** showing the C-H-Cl type intramolecular interaction.

Figure S2. Part of the crystal structure, showing C-H^{$-\pi$} interactions [left (a), right (b)].

Figure S3. Part of the crystal structure, showing C-H-Cl interactions.