Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Tuning Reactivity of Copper Complexes Supported by Tridentate Ligands Leading to Two-Electron Reduction of Dioxygen

Pattira Suktanarak,^a Sarayut Watchasit,^b Kantima Chitchak,^c Nukorn Plainpan,^a Kittipong Chainok, ^d Parichatr Vanalabhpatana,^{a,e} Prompong Pienpinijtham,^a Chomchai Suksai,^f Thawatchai Tuntulani,^a Vithaya Ruangpornvisuti,^a and Pannee Leeladee ^{a,g,*}

- ^a Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- ^b Nuclear Magnetic Resonance Spectroscopic Laboratory, Science Innovation Facility, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
- ^c Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- ^d Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
- ^e Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- ^f Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
- ^gResearch Group on Materials for Clean Energy Production STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

	2b	3a	3b
Empirical formula	$C_{54}H_{46}C_{14}Cu_2N_6O_8$	$C_{44}H_{42}Cl_4Cu_2N_8O_{16}\\$	$C_{44}H_{46}Cl_4Cu_2N_8O_{18}\\$
Formula weight	1175.85	1207.73	1243.77
Temperature/K	296.0	296.0	296.0
Crystal system	monoclinic	triclinic	triclinic
Space group	$P2_{1}/n$	<i>P</i> -1	<i>P</i> -1
$a/\text{\AA}$	11.5432(11)	8.4013(6)	10.0380(3)
b/Å	12.0648(12)	9.4328(6)	10.6269(3)
$c/\text{\AA}$	20.0110(18)	16.0385(11)	12.7725(4)
$\alpha/^{\circ}$	90	84.045(2)	109.7640(10)
$\beta/^{\circ}$	94.684(3)	84.266(2)	95.8450(10)
$\gamma/^{\circ}$	90	78.661(2)	97.6530(10)
V/Å ³	2777.6(5)	1235.36(15)	1254.94(7)
Ζ	2	1	1
$\rho_{calc}g/cm^3$	1.406	1.623	1.646
μ/mm^{-1}	1.015	1.156	1.143
F(000)	1204.0	616.0	636.0
Crystal size/mm ³	$0.30 \times 0.22 \times 0.18$	$0.24 \times 0.22 \times 0.16$	$0.26 \times 0.26 \times 0.20$
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2θ range for data collection/°	6.186 to 52.872	5.768 to 50.846	2.9–27.8°
Reflections collected	51374	29505	42084
Independent reflections	5692	4537	5996
R _{int} , R _{sigma}	0.0934, 0.0460	0.1042, 0.0610	0.0401, 0.0260
Data/restraints/parameters	5692/202/371	4537/88/372	5996/195/419
Goodness-of-fit on F^2	1.023	1.031	1.024
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0448, wR_2 = 0.1120$	$R_1 = 0.0596, wR_2 = 0.1361$	$R_1 = 0.0430, wR_2 = 0.1074$
Final R indexes [all data]	$R_1 = 0.0693, wR_2 = 0.1240$	$R_1 = 0.1027, wR_2 = 0.1562$	$R_1 = 0.0618, wR_2 = 0.1175$
Largest diff. peak/hole / e $Å^{-3}$	0.47/-0.71	0.59/-0.59	0.60/-0.48

Table S1. Crystal data and structure refinement for 2b, 3a, and 3b.

Complex 2b				
Cu1-N1	1.988(2)	Cu1-Cl1	2.2429(8)	
Cu1-N2	2.031(2)	Cu1-Cl1 ⁱ	2.8396(9)	
Cu1–N3	1.980(2)	Cu1-Cu1 ⁱ	3.5574(8)	
Cl1-Cu1-Cl1 ⁱ	91.98 (3)	N2-Cu1-Cl1 ⁱ	91.65 (7)	
N1-Cu1-Cl1 ⁱ	93.13 (7)	N3-Cu1-Cl1 ⁱ	87.85 (8)	
N1-Cu1-Cl1	97.59 (8)	N3-Cu1-Cl1	96.97 (8)	
N1-Cu1-N2	82.92 (10)	N3-Cu1-N1	165.37 (10)	
N2-Cu1-Cl1	176.30 (7)	N3-Cu1-N2	82.45 (10)	
	Con	nplex 3a		
Cu1-N1	1.963(4)	Cu1-N4	1.982(5)	
Cu1-N2	2.032(4)	Cu1–O1	2.442(4)	
Cu1-N3	1.978(4)	Cu1…Cu1 ⁱⁱ	7.7309(5)	
N1-Cu1-N2	84.38(16)	N2-Cu1-N4	174.87(17)	
N1-Cu1-N3	167.14(17)	N2-Cu1-O1	90.09(15)	
N1-Cu1-N4	97.78(17)	N3-Cu1-N4	94.98(18)	
N1-Cu1-O1	91.00(15)	N3-Cu1-O1	89.64(15)	
N2-Cu1-N3	82.78(16)	N4-Cu1-O1	94.51(17)	
	Con	nplex 3b		
Cu1-N1	1.981(2)	Cu1–N4	1.994(2)	
Cu1-N2	2.035(2)	Cu1–O1	2.295(2)	
Cu1–N3	1.993(2)	Cu1…Cu1 ⁱⁱ	8.9150(14)	
N1-Cu1-N2	82.75(8)	N2-Cu1-N4	167.82(9)	
N1-Cu1-N3	165.50(9)	N2-Cu1-O1	94.18(8)	
N1-Cu1-N4	96.78(9)	N3-Cu1-N4	97.09(10)	
N1-Cu1-O1	94.19(8)	N3-Cu1-O1	88.04(9)	
N2-Cu1-N3	82.80(9)	N4-Cu1-O1	97.99(9)	

Table S2. Selected bond lengths and bond angles for 2b, 3a, and 3b.

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, 1-y, 1-z.

<i>D</i> –H…A	<i>D</i> –Н	Н…А	$D \cdots A$	<i>D</i> –H··· <i>A</i>	
Complex 2b					
C4−H4····Cg1 ⁱ	0.97	2.7788(16)	3.475(4)	139	
С7-Н7А…ОЗВ ^{іі}	0.97	2.55	3.252(7)	129	
C13-H13A····O4B	0.97	2.54	3.154(8)	121	
$C25-H25\cdots Cg2^{i}$	0.97	2.9078(16)	3.720(4)	141	
	Complex 3	a			
$C6-H6A\cdots O8B^{iii}$	0.97	2.52	3.176(11)	125	
C6–H6 B ···O7 A^{iii}	0.97	2.47	3.247(15)	137	
C3–H3…O7 <i>B</i> ^{iv}	0.93	2.66	3.255(12)	123	
C3–H3…O7A ^{iv}	0.93	2.41	3.112(15)	132	
C1–H1…O6 <i>B</i>	0.93	2.28	3.113(11)	149	
С1-Н1…О6А	0.93	2.31	2.986(12)	129	
	Complex 3	b			
O1–H1A····O2A	0.92	2.12	2.998(5)	158	
O1–H1A····O2B	0.92	2.02	2.922(11)	168	
O1–H1 <i>B</i> ····O6A	0.92	1.89	2.806(4)	172	
O1–H1 <i>B</i> ····O6 <i>B</i>	0.92	2.14	2.992(16)	153	
$C2-H2\cdots O2B^{v}$	0.93	2.40	3.031(9)	125	
$C7-H7A\cdots O8B^{vi}$	0.97	2.41	3.15(2)	133	
С12-Н12…О9А ^{vii}	0.93	2.51	3.239(5)	136	
C22–H22A····O5A ^v	0.96	2.43	3.125(6)	129	
C22–H22 A ···O5 B^{v}	0.96	2.34	3.089(10)	135	

Table S3. Hydrogen-bond geometry (Å, $^{\circ}$) for 2b, 3a, and 3b.

Symmetry codes: (i) -x+3/2, y-1/2, -z+1/2; (ii) x+1, y-1, z; (iii) x+1, y-1, z; (iv) -x+1, -y+2, -z+1; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+2, -z+2; (vii) -x+1, -y+1, -z+2.

Fig. S1. Structure of compound $[Cu_2(\mu-Cl)_2(adpa)_2](ClO_4)_2$ (2b).

Fig. S2. View of the 2D sheets in 2b generated by intramolecular $\pi - \pi$ stacking and intermolecular $C - H \cdots \pi$ interactions

Fig. S3. Packing diagram in **2b** along the *a* axis, showing $C-H\cdots O$ hydrogen bonds.

(a)

(b)

Fig. S4. Structure of compounds 3a (a) and 3b (b).

Fig. S5. View of the 1D chain in **3a**, generated π - π stacking interactions.

Fig. S6. Packing diagram in **3a** along the *b* axis, showing C–H···O hydrogen bonds.

Fig. S7. Packing diagram in **3b** along the *b* axis, showing $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds.

Table S4. Areas under cyclic voltammetric curves for DMF–0.10 M TBAPF₆ solutions containing 1.00 mM **1**, **2a**, and **3a** recorded with a glassy carbon electrode (area = 0.071 cm^2) at 100 mV·s⁻¹ from +0.30 to -1.20 to +0.30 V (Fig. 2)

Complex	Area (µA·V)	Charge (µC)
1	4.74	47.4
2a	4.86	48.6
3 a	8.17	81.7

Fig. S8. Cyclic voltammograms recorded with a glassy carbon electrode (area = 0.071 cm^2) at 100 mV·s⁻¹ from +0.50 to -1.00 to +0.50 V for CH₃CN solution containing 0.10 M TBAPF₆ (dotted line) and CH₃CN containing 0.10 M TBAPF₆ and 1.00 mM **3a** (solid line).

Fig. S9. Cyclic voltammograms for DMF containing 0.10 M TBAPF₆ in the presence of 1.00 mM (a) 1, (b) 2a, and (c) 3a recorded with a glassy carbon electrode (area = 0.071 cm^2) at 100 mV·s⁻¹ from (A) +0.30 to -1.20 to +0.30 V, (B) +0.30 to -1.40 to +0.30 V, (C) +0.30 to -1.60 to +0.30 V, and (D) +0.30 to -1.80 to +0.30 V.

Fig. S10. UV-vis spectral changes upon addition of ascorbic acid (0 - 1.2 equiv) to **2a** solution (2 mM) in DMF/CH₃CN. The inset shows plot of Absorbance at 588 nm *vs*. equiv. of AsH₂ added.

Fig. S11. UV-vis spectral changes upon addition of ascorbic acid (0.5 equiv) to compound **1** solution (2 mM) in DMF/CH₃CN. The inset shows plot of absorbance at 606 nm *vs*. times.

Fig. S12. ¹H-NMR spectra of compound **1** (a); a in the presence of ascorbic acid (0.55 equiv) in D_2O/CD_3CN (1-6 h) (b)-(e) and a after addition of ascorbic acid (0.55 equiv) in D_2O/CD_3CN under air for 16 h (f).

Fig. S13. UV-vis spectral changes of 3a (1 mM) in CH₃CN in the presence of ascorbic acid (0 – 2 equiv) in H_2O/CH_3CN .

Fig. S14. ¹H-NMR spectra of (a) 10 mM **3a**; (b) upon the addition of ascorbic acid (1.5 equiv) to **3a** in d^7 -DMF/CD₃CN; b exposed to O₂ for 1 h (c) and 2h (d).

Fig. S15. EPR spectra of (a) 10 mM of **3a**, (b) **3a** in the presence of ascorbic acid (1.5 equiv.) in 15% DMF/CH₃CN and (c) **3a** after addition of ascorbic acid (1.5 equiv.) in CH₃CN under O₂. The EPR parameter: frequency= 9.838 GHz, microwave power= 0.620 mW, modulation amplitude= 5.00 G, modulation frequency= 100 kHz.

Fig. S16. ¹H-NMR spectra of (a) 10 mM **2a**; (b) upon the addition of ascorbic acid (0.55 equiv) to **2a** in D_2O/CD_3CN (5 min) and (c)-(e) b exposed to air for 1, 4 and 24 h.

Fig. S17. UV-vis spectra of reaction between Cu^I(**adpa**) (2.0 mM) and ascorbic acid (0.55 equiv) in H₂O/CH₃CN after purging $O_2(0-5 h)$.

Fig. S18. UV-vis spectral change of reaction between $Cu_2^I(addpa)$ (1.0 mM) and ascorbic acid (1.10 equiv) in H₂O/CH₃CN after purging O₂(0-1 h).

Fig. S19. (a) UV-vis spectra and (b) EPR spectra of 3a before and after O₂ reduction.

Fig. S20. ¹H-NMR of ORR catalyzed by **3a** upon the addition of 10 equiv. AsH₂ in 5% D_2O/CH_3CN . The reaction was prepared under O_2 gas for 90 min.

Fig. S21. UV-vis spectra of **3a** in CH₃CN (1mM) (blue line) and 1mM solution diluted from ORR reaction in the presence of excess O_2 and AsH₂ (10 equiv.) (green line).

Fig. S22. Color change of (a) AgNPrs in CH₃CN; (b) AgNPrs in the presence of H_2O_2 (0.1 M); (c) AgNPrs in the presence of **3a** and (d) AgNPrs added to catalytic in ORR reaction (**3a** + 10 equiv. AsH₂ + excess O₂)

Fig. S23. Scanning electron microscopy (SEM) micrograph of magenta precipitates (AgNPrs)

Point	001	002	003	004	005	006
% mass (C)	77.65	75.74	75.74	68.48	76.01	73.73
% mass (O)	16.54	16.05	16.05	14.92	17.27	15.55
% mass (Ag)	4.47	1.15	1.15	1.72	1.30	1.50
% mass (Na)	0.87	7.06	7.06	14.89	5.42	8.74

Fig. S24. Scanning electron microscopy (SEM) micrograph of white precipitates $(AgNPrs + H_2O_2)$

Table S6. Element composition of white precipitates analyzed by EDX technique

Point	001	002	003	004
% mass (C)	73.96	32.10	65.17	74.81
% mass (O)	22.43	11.26	21.65	23.65
% mass (Ag)	3.61	54.41	12.06	1.02
% mass (Na)	-	0.41	0.88	0.52

Fig. S25. The CPCM(UFF)/B3LYP/6–31G(d,p)–optimized structures in CH₃CN of Cu^I₂(**addpa**)

Fig S26. ¹H-NMR spectrum for determination of electron transferred in ORR catalysed by $Cu_2(addpa)$ (6mM) in O₂-saturated solvent (5% D₂O/CD₃CN)

Table S7 Calculation for number of electrons consumed in oxygen reduction

[O ₂] (mM)*	Number of e ⁻ used per O ₂ molecule
12.1 ± 0.7^{1}	1.9 e ⁻
9.6 ± 0.5^2	2.4 e ⁻

*The concentration of O₂ saturated in CH₃CN was obtained from the literature.

Fig. S27. Proposed mechanism for ORR mediated by Cu₂(addpa)

References:

- 1. S. Horstmann, A. Grybat and R. Kato, J. Chem. Thermodyn., 2004, 36, 1015-1018.
- 2. C. Franco and J. Olmsted, *Talanta*, 1990, **37**, 905-909.