Supporting Information (SI)

Improving the capability of UiO-66 for Cr(VI) adsorption from aqueous solutions by introducing the isonicotinate N–Oxide as the functional group

N.Shokouhfar,^a L. Aboutorabi^a and A. Morsali*^a

^aDepartment of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-175, Iran

Corresponding Author: Morsali_a@modares.ac.ir, Morsali_a@yahoo.com

Compound	Ligand mass (X=BDC) (mg)	Ligand mass (Y=INO) (mg)	ZrCl ₄ mass (mg)	HCl volume (µL)	DMF volume (mL)	Activation temperature (°C)
Ui O-6 6	332 (2 mmol)	0	233 (1 mmol)	34.5	10	120
UiO-66-30%	166 (1 mmol)	139 (1 mmol)	233 (1 mmol)	34.5	10	120
UiO-66-50%	99 (0.6 mmol)	195 (1.4 mmol)	233 (1 mmol)	34.5	10	120
UiO-66-70%	50 (0.3 mmol)	236 (1.7 mmol)	233 (1 mmol)	34.5	10	120
TMU-66	0	278 (2 mmol)	233 (1 mmol)	34.5	10	120

Table S1. Experimental parameters for synthesis of the compounds.

S1

Figure S1. PXRD patterns of structures: a) as-synthesized and simulated UiO-66, b) UiO-66-30%, c) UiO-66-50%, d) UiO-66-70%.

	-			
Samula	The area under the c	urve in NMR spectra		
Sample	7.97 ppm*	8.50 ppm	DDC.INU	
UiO-66-30%	0.821	0.1790	7:3	
UiO-66-50%	0.2545	0.1354	1:1	
UiO-66-70%	0.1932	0.2961	3:7	

 Table S2. The area under the curve in NMR spectra.

*Singlet peak located at 7.97 ppm is attributed to BDC linker. The area under the curve of BDC is twice INO.

Figure S2. Comparison of the PXRD patterns UiO-66 with TMU-66 was synthesized with modulators and HCl.

Figure S3. Nitrogen gas adsorption-desorption isotherms: (I) benzoic acid-synthesized TMU-66; and (II) HCl-synthesized TMU-66.

Table. 55. Elemental analysis of TWO-00.						
Complex	%C	%Н	%N	%Zr		
Observed HCl-synthesized TMU-66	27.57	3.04	6.01	27.35		
Calculated for Zr ₆ O ₄ (OH) ₄ (INO) ₆ (Cl) ₄ (OH) ₂ (DMF) ₃ (H ₂ O) ₄	27.35	2.99	6.38	27.72		
Observed benzoic acid (BzO) -synthesized TMU-66	38.63	3.52	5.33	25.76		
Calculated for Zr ₆ O ₄ (OH) ₄ (INO) ₆ (BzO) ₄ (OH) ₂ (DMF) ₂	38.69	2.95	5.16	25.20		

Table S3 Elemental analysis of TMU-66

Details for crystal structure refinement of TMU-66

Figure S5. Comparison of the simulated PXRD pattern obtained from synchrotron X-ray with PXRD patterns of TMU-66.

data_TMU-66

_audit_creation_date 2018-04-04

_audit_creation_method 'Materials Studio'

_symmetry_space_group_name_H-M 'PA-3'

_symmetry_Int_Tables_number 205

_symmetry_cell_setting cubic

loop_

_symmetry_equiv_pos_as_xyz

x,y,z

-x+1/2,-y,z+1/2

-x,y+1/2,-z+1/2

x+1/2,-y+1/2,-z

z,x,y

z+1/2,-x+1/2,-y	
-z+1/2,-x,y+1/2	
-z,x+1/2,-y+1/2	
y,z,x	
-y,z+1/2,-x+1/2	
y+1/2,-z+1/2,-x	
-y+1/2,-z,x+1/2	
-x,-y,-z	
x+1/2,y,-z+1/2	
x,-y+1/2,z+1/2	
-x+1/2,y+1/2,z	
-z,-х,-у	
-z+1/2,x+1/2,y	
z+1/2,x,-y+1/2	
z,-x+1/2,y+1/2	
-y,-z,-x	
y,-z+1/2,x+1/2	
-y+1/2,z+1/2,x	
y+1/2,z,-x+1/2	
_cell_length_a	19.6716
_cell_length_b	19.6716
_cell_length_c	19.6716
_cell_angle_alpha	90.0000
_cell_angle_beta	90.0000
_cell_angle_gamma	90.0000
loop_	
_atom_site_label	

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

 $_atom_site_fract_z$

_atom_site_U_iso_or_equiv

_atom_site_adp_type

_atom_site_occupancy

Zr1	Zr	0.12040	0.00000	0.00000	0.00000	Uiso	1.00
02	0	0.17260	0.00000	0.09600	0.00000	Uiso	1.00
03	0	0.05610	0.94390	0.94390	0.00000	Uiso	1.00
04	0	0.09600	0.00000	0.17260	0.00000	Uiso	1.00
05	0	0.36299	-0.00118	0.36088	0.00000	Uiso	1.00
C13	С	0.73570	0.50000	0.31590	0.00000	Uiso	1.00
C15	С	0.85270	0.50000	0.35270	0.00000	Uiso	1.00
C16	С	0.79810	0.50000	0.29810	0.00000	Uiso	1.00
C17	С	0.81590	0.50000	0.23570	0.00000	Uiso	1.00
N19	N	0.70190	0.50000	0.20190	0.00000	Uiso	1.00
C20	С	0.68410	0.50000	0.26430	0.00000	Uiso	1.00
C21	С	0.76430	0.50000	0.18410	0.00000	Uiso	1.00
O205	0	0.94390	0.94390	0.94390	0.00000	Uiso	1.00
loop_							
_geom_bond_atom_site_label_1							
_geom_bond_atom_site_label_2							
_geom_bond_distance							

_geom_bond_site_symmetry_2

_ccdc_geom_bond_type

Zr1 O2 2.150 . S

Zr1	O4	2.150 5 S
Zr1	O205	2.009 13_666 S
Zr1	03	2.009 1_544 S
Zr1	Zr1	3.350 5 S
Zr1	Zr1	3.350 9 S
Zr1	Zr1	3.350 17 S
Zr1	Zr1	3.350 21 S
Zr1	03	2.009 17_656 S
Zr1	05	2.720 18_545 S
Zr1	03	2.009 21_665 S
Zr1	05	2.756 2_554 S
02	C15	1.125 3_645 S
03	Zr1	2.009 1_566 S
03	Zr1	2.009 21_566 S
03	Zr1	2.009 17_566 S
04	Zr1	2.150 9 S
04	C15	1.125 3_645 S
05	Zrl	2.720 24 S
05	N19	1.776 3_645 S
05	Zrl	2.756 2 S
C13	C16	1.276 . S
C13	C20	1.436 . S
C15	C16	1.519 . S
C15	O4	1.125 3_655 S
C15	02	1.125 3_655 S
C16	C17	1.276 . S
C17	C21	1.436 . S

 N19
 C21
 1.276
 .
 S

 N19
 C20
 1.276
 .
 S

 N19
 O5
 1.776
 3_655
 S

 O205
 Zr1
 2.009
 13_666
 S

 O205
 Zr1
 2.009
 17_666
 S

Figure S6. Rietveld plot of TMU-66; red: experimental pattern; blue: calculated pattern; green: Bragg peaks; and black: the difference between the experimental and calculated data.

Figure S7. Structural and topological representation of TMU-66: a) $[Zr_6O_4(OH)_4]$ cluster; b) coordination environment around Zr_6 cluster in TMU-66; c) and d) 3-dimensional structures; orange, Zr; red, O; blue, N; and gray, C atoms.

Stability of the compounds

Thermal stability

Figure S8. The TGA curves of: I) HCl-synthesized TMU-66 and II) benzoic acid-synthesized TMU-66.

Figure S9. TGA plots of TMU-66 and mixed-ligand compounds.

Figure S10. PXRD patterns before and after immersion in H_2O and HCl for 2 h: (I) HClsynthesized TMU-66; (II) UiO-66-50% (**a**: As-synthesized materials; **b**: in H_2O ; and **c**: in HCl).

Figure S11. PXRD patterns of benzoic acid-synthesized TMU-66 and the sample immersed in H_2O for 2 h.

Figure S12. Langmuir linear plots for all of the synthesized compounds (amount of adsorbent: 10 mg, contact time: 2 hours, sample volume: 50 mL, pH: 4.0 and T: 298 K).

20 Figure S13. PXRD patterns for TMU-66 and other compounds after Cr(VI) adsorption.

Figure S14. Comparison of TGA profiles before and after Cr(VI) adsorption (ACT means activated).

Figure S15. Predominance diagram showing the relative distribution of different Cr(VI) species in water as a function of pH and total Cr(VI) concentration [6].

Figure S16. Linear pseudo-second-order kinetic model for adsorption of Cr(VI) on TMU-66 (initial Cr(VI) concentration: 50 mg/L, amount of adsorbent: 10 mg, sample volume: 50 mL, pH: 4.0 and T: 298 K).

T (K)	$\Delta G^{\circ} (kJ mol^{-1})$	$\Delta H^{\circ} (kJ mol^{-1})$	$\Delta S^{\circ} (kJ mol^{-1} K^{-1})$	R^2
283	-0.027			
297	-0.209	2 652	0.012	0.0611
313	-0.417	5.052	0.015	0.9011
338	-0.742			

Table. S4. Thermodynamic parameters for Cr(VI) adsorption on TMU-66.

Slope = $-\Delta H/R \approx \Delta H$ = 3.652 KJ/mol Intercept = $\Delta S/R \approx \Delta S$ = 13.0513 J/mol $\Delta G = \Delta H$ -T ΔS ΔS = 13.0513/1000 = 0.013 KJ/mol

Selectivity test for TMU-66

Figure S18. Adsorption of various cationic and anionic adsorbates on TMU-66.

Adsorption mechanism

Figure S19. SEM images: (I) as-synthesized TMU-66; (II) Cr(VI)-adsorbed TMU-66.

Figure S20. FT-IR spectra for TMU-66 before and after the Cr(VI) adsorption.

Figure S21. EDS images of TMU-66 for: (I) as-synthesized TMU-66; (II) Cr(VI)-adsorbed TMU-66.

Figure S22. High-resolution XPS spectra of: a) C 1s and b) O 1s.

MOF adsorbent		Maximum capacity (mg/g)	Kinetic studies: Equilibrium time at RT	BET surface area (m²/g)	Ref.
	MOF-867	53	> 12 h	1862	1
	NU-1000	75	< 3 min	2072	2
	JLU-MOF50	92	< 10 min	1101	3
Zr-MOFs	TMU-66	60	< 3 min	79	This study
	UiO-66	15	NM	1350	This study
	UiO-66-NH ₂	32	> 5 min	710	4
10 DT	PCN-134	57	> 10 min	1946	5
Other	1.ClO4	63	6 h	NM	6
MOFs	SLUG-21	60	48 h	NM	7
	TMU-30	145	< 10 min	NM	8
	1·SO4	166	72 h	NM	9

Table S5. Adsorption Capacities and Time of Equilibrium for Cr(VI) on Various MOFs.

NM: not measured.

References

- 1. Q. Zhang, J. Yu, J. Cai, L. Zhang, Y. Cui, Y. Yang, B. Chen and G. Qian, *Chem. Commun.*, 2015, 51, 14732-14734.
- Lin, Z.J., Zheng, H.Q., Zheng, H.Y., Lin, L.P., Xin, Q. and Cao, R., *Inorg. Chem.*, 2017, 56(22), 14178-14188.
- 3. Sun X, Yao S, Yu C, Li G, Liu C, Huo Q, Liu Y. J. Mater. Chem. A, 2018.
- 4. Wu S, Ge Y, Wang Y, Chen X, Li F, Xuan H, Li X. *Environmental technology*. 2018 Aug 3;39(15):1937-48.
- 5. S. Yuan, J.-S. Qin, L. Zou, Y.-P. Chen, X. Wang, Q. Zhang and H.-C. Zhou, J. Am. Chem. Soc., 2016, 138, 6636-6642.
- P.-F. Shi, B. Zhao, G. Xiong, Y.-L. Hou and P. Cheng, *Chem. Commun.*, 2012, 48, 8231-8233.
- 7. H. Fei, M. R. Bresler and S. R. J. Oliver, J. Am. Chem. Soc., 2011, 133, 11110-11113.
- Aboutorabi, L.; Morsali, A.; Tahmasebi, E.; Buyukgungor, O., *Inorg. Chem.* 2016, 55 (11), 5507-5513.
- 9. A. V. Desai, B. Manna, A. Karmakar, A. Sahu and S. K. Ghosh, *Angew. Chem. Int. Ed.*, 2016, 55, 7811-7815.