Supporting online Materials for

Single Crystalline Thallium Rhodium Oxide Pyrochlore for Highly Improved Round

Trip Efficiency of Hybrid Na-air Battery

Myeongjin Kim, Hyun Ju and Jooheon Kim*

School of Chemical Engineering & Materials Science, Chung-Ang University, 211 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea

*Corresponding author: Jooheon Kim, Tel:+82-2-820-5763; Fax:+82-2-812-3495; E-mail address:

jooheonkim@cau.ac.kr (J. Kim)

Characterization methods

X-ray diffraction (XRD) patterns were collected (New D8-Advance/Bruker-AXS) at a scan rate of 1° s⁻¹ within the 2 θ range of 10°–80° using Cu K_{a1} radiation (0.154056 nm). The morphologies of the samples were analyzed using high-resolution transmission electron microscopy (HR-TEM, JEM-3010) and Field emission scanning electron microscopy (FE-SEM, SIGMA, Carl Zeiss). The Xray adsorption near edge structure (XANES) were collected on BL10C beam line at the Pohang light source (PLS-II) with top-up mode operation under a ring current of 200 mA at 3.0 GeV. The incident beam was collimated by a Ru-coated mirror at 2.8 mrad and monochromatized using a channel-cut Si (1 1 1) monochromator. The beamline energy was calibrated with Pt reference foil to the Pt L_{III}-edge position at 11564 eV. Ionization chambers filled with N₂-Ar was gas mixtures were used for XAS detection in transmission mode, where a Pt reference foil was measured congruently with the sample between the second and third ionization chambers.

Figure S1. ORR LSV curves for Pt/C at different rotating speeds with a scan rate of 10 mV s⁻¹.

Figure S2. (a) Koutecky-Levich plots derived from the ORR LSV curves of $Tl_2Rh_2O_7$. (b) Koutecky-Levich plots derived from the ORR LSV curves of Pt/C. The rpm is converted to radian sec⁻¹ by using

following equation :
$$rad \ s^{-1} = \frac{rpm \times 2 \times \pi}{60}$$

Figure S3. Schematic representation of the preparation of hybrid Na-air battery.

Figure S4. Cycling stability of bare carbon paper electrode up to 50 cycles with terminated charge and discharge voltage and round trip efficiency.

Figure S5. Cycling terminated charge and discharge voltage and round trip efficiency profile of Tl₂Rh₂O₇ at different current densities.

Catalyst	Electrolyte	E _{ORR} [at -3 mA cm ⁻²]	Ref
Mn oxide	0.1 M KOH	0.73V	1
PCN-CFP	0.1 M KOH	0.67V	2
Ni ₃ Fe/N-C sheets	0.1 M KOH	0.78V	3
NiCo ₂ O ₄ /G	0.1 M KOH	0.56V	4
N, S-CN	0.1 M KOH	0.77V	5
$Co_3O_4/2.7Co_2MnO_4$	0.1 M KOH	0.68V	6
Co/N-C-800	0.1 M KOH	0.74V	7
NiCo ₂ S ₄ @N/S-rGO	0.1 M KOH	0.72V	8
$Tl_2Rh_2O_7$	0.1 M KOH	0.832V	This work

Table S1. Comparison of the ORR activity of $Tl_2Rh_2O_7$ with other electrocatalysts previously reported.

Table S2. Comparison of oxygen electrode activity of $Tl_2Rh_2O_7$ with other electrocatalysts previouslyreported, including metal oxide based, perovskite based carbon based, pyrochole oxide basedbifunctional electrocatalysts.

Catalyst		E _{OER, at 10 mA cm-2} - E _{ORR, at -3 mA cm-2}	Ref
	CoO/N-Graphene	0.76V	9
	MnO _x Film	1.06V	10
	MnCoO _x /N-Carbon	0.84V	11
	Co ₃ O ₄ /N-Graphene	0.71V	12
Metal oxide-based	Co ₃ O ₄ -Carbon	0.74V	13
	NiCo ₂ O ₄ /Graphene	0.96V	4
	Mn _x O _y /N-Carbon	0.87V	14
	LT-Li _{0.5} CoO ₂	1.00V	15
	Co ₃ O ₄ /N,S-Carbon	0.79V	16
Perovskite-based	La(BaSr)CoFeO	1.01V	17
	LaNiO _{3-δ}	1.04V	18
	nsLANiO ₃ /N-Carbon	0.97V	19
	LaNiO ₃ /N-CNT	0.95V	20
Carbon-based	N-Graphene/CNT	0.95V	21
	N-Carbon	0.84V	22
	Fe, N-Carbon	0.76V	23
	N-CNT/Graphene	0.91V	24
	P, N-Carbon Fiber	0.96V	2
	GNS/MC	0.72V	25
	Fe-Mc	0.88V	25

	N, S, Fe-Carbon	0.91V	26
Pyrochlore oxide-based	Pb ₂ Ru ₂ O _{6.5}	0.82V	27
	$Y_2[Ru_{2\text{-}x}Y_x]O_{7\text{-}y}$	1.03V	28
	$Tl_2Rh_2O_7$	0.82V	This work

Na-air battery	Current density	Round trip Efficiency	Cycles	Power density	Ref
Graphitic nanoshell/mesoporous carbon // Aqueous	N/A	96.2%	10	78.2 mW g ⁻¹ at 60 mA g ⁻¹	25
Carbon black on Al mesh // Non-Aqueous	200 mA g ⁻¹	47%	20	N/A	29
Mesoporous carbons // Non- Aqueous	100 mA g ⁻¹	42%	20	N/A	30
VGC // Aqueous	4 mA g ⁻¹	81%	50	104 mW g ⁻¹ at 80 mA g ⁻¹	31
CNT/Ni with NaI // Non- aqueous	0.05 mA cm ⁻²	55%	150	N/A	32
Porous CaMnO ₃ /C // Non- Aqueous	100 mA g ⁻¹	55%	80	N/A	33
MnO ₂ /rGO/carbon paper // Aqueous	15 mA g ⁻¹	81%	20	N/A	34
N-CNT // Non-Aqueous	75 mA g ⁻¹	53%	50	N/A	35
Pt/C // Aqueous	0.025 mA g ⁻¹	84.3%	18	N/A	36
N-doped graphene nanosheet // Non-Aqueous	75 mA g ⁻¹	61%	03	N/A	37
Pt@graphene nanosheets // Non-Aqueous	0.1 mA cm ⁻²	68%	10	N/A	38
Co ₃ (PO ₄) ₂ // Aqueous	0.05 mA cm ⁻²	83%	50	N/A	39
$Tl_2Rh_2O_7$	0.01 mA cm ⁻²	93.65%	50	159.9 mW g ⁻¹ at 120 mA g ⁻¹	This work

 $\label{eq:table S3. Comparison of electrochemical performance of $Tl_2Rh_2O_7$ with other air electrodes previously reported$

Reference

- 1. Y. Gorlin and T. F. Jaramillo, J. Am. Chem. Soc., 2010, 132, 13612-13614.
- 2. T. Y. Ma, J. Ran, S. Dai, M. Jaroniec and S. Z. Qiao, Angew. Chem. Int. Edit., 2015, 54, 4646-4650.
- G. Fu, Z. Cui, Y. Chen, Y. Li, Y. Tang and J. B. Goodenough, Adv. Energy Mater., 2017, 7, 1601172.
- 4. D. U. Lee, B. J. Kim and Z. Chen, J. Mater. Chem. A, 2013, 1, 4754-4762.
- 5. K. Qu, Y. Zheng, S. Dai and S. Z. Qiao, Nano Energy, 2016, 19, 373-381.
- 6. D. Wang, X. Chen, D. G. Evans and W. Yang, Nanoscale, 2013, 5, 5312-5315.
- Y. Su, Y. Zhu, H. Jiang, J. Shen, X. Yang, W. Zou, J. Chen and C. Li, *Nanoscale*, 2014, 6, 15080-15089.
- 8. Q. Liu, J. Jin and J. Zhang, ACS Appl. Mater. Interfaces, 2013, 5, 5002-5008.
- 9. S. Mao, Z. Wen, T. Huang, Y. Hou and J. Chen, Energy Environ. Sci., 2014, 7, 609-616.
- Y. Gorlin, B. Lassalle-Kaiser, J. D. Benck, S. Gul, S. M. Webb, V. K. Yachandra and J. Yano, T. F. Jaramillo, *J. Am. Chem. Soc.*, 2013, 135, 8525-8534.
- A. Zhao, J. Masa, W. Xia, A. Maljusch, M.-G. Willinger, G. Clavel, K. Xie, R. Schlögl, W. Schuhmann and M. Muhler, *J. Am. Chem. Soc.*, 2014, **136**, 7551-7554.
- 12. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, Nat. Mater., 2011, 10, 780.
- 13. T. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, J. Am. Chem. Soc., 2014, 136, 13925-13931.
- 14. J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun, S. Grützke, P. Weide, M. Muhler and W. Schuhmann, *Angew. Chem. Int. Ed.*, 2014, **53**, 8508-8512.
- T. Maiyalagan, K. A. Jarvis, S. Therese, P. J. Ferreira and A. Manthiram, *Nat. Commun.*, 2014, 5, 3949.
- 16. C. Zhang, M. Antonietti and T. P. Fellinger, Adv. Funct. Mater., 2014, 24, 7655-7665.
- 17. J. I. Jung, H. Y. Jeong, J. S. Lee, M. G. Kim and J. Cho, *Angew. Chem. Int. Ed.*, 2014, **126**, 4670-4674.
- 18. W. Zhou and J. Sunarso, J. Phys. Chem. Lett., 2013, 4, 2982-2988.

- W. G. Hardin, D. A. Slanac, X. Wang, S. Dai, K. P. Johnston and K. J. Stevenson, J. Phys. Chem. Lett., 2013, 4, 1254-1259.
- 20. Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang and Z. Chen, *Nano Lett.*, 2012, 12, 1946-1952.
- 21. Z. Wen, S. Ci, Y. Hou and J. Chen, Angew. Chem. Int. Ed., 2014, 53, 6496-6500.
- 22. Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi and K. Hashimoto, Nat. Commun., 2013, 4, 2390.
- 23. Y. Zhao, K. Kamiya, K. Hashimoto and S. Nakanishi, J. Phys. Chem. C, 2015, 119, 2583-2588.
- 24. H. W. Park, D. U. Lee, Y. Liu, J. Wu, L. F. Nazar and Z. Chen, *J. Electrochem. Soc.*, 2013, **160**, A2244-A2250.
- 25. J. Y. Cheon, K. Kim, Y. J. Sa, S. H. Sahgong, Y. Hong, J. Woo,S.-D. Yim, H. Y. Jeong, Y. Kim and S. H. Joo, *Adv. Energy Mater.*, 2016, 6, 1501794.
- N. R. Sahraie, J. P. Paraknowitsch, C. Gobel, A. Thomas and P. Strasser, *J. Am. Chem. Soc.*, 2014, 136, 14486-14497.
- 27. J. Park, M. Risch, G. Nam, M. Park, T. J. Shin, S. Park, M. G. Kim, Y. Shao-Horn and J. Cho, *Energy Environ. Sci.*, 2017, **10**, 129-136.
- 28. J. Park, M. Park, G. Nam, M.-G. Kim and J. Cho, Nano Letters, 2017, 17, 3974-3981.
- 29. S. Xu, Y. Lu, H. Wang, H. D. Abruna and L. A. Archer, J.Mater. Chem. A, 2014, 2, 17723–17729.
- W.-J. Kwak, Z. Chen, C. S. Yoon, J.-K. Lee, K. Amine and Y.-K. Sun, *Nano Energy*, 2015, 12, 123–130.
- 31. Z. Khan, B. Senthilkumar, S. O. Park, S. Park, J. Yang, J. H. Lee, H.-K. Song, Y. Kim, S. K. Kwak and H. Ko, *J. Mater. Chem. A*, 2017, *5*, 2037-2044.
- W.-W. Yin, Z. Shadike, Y. Yang, F. Ding, L. Sang, H. Li and Z.-W. Fu, *Chem. Commun.*, 2015, 51, 2324–2327.
- 33. Y. Hu, X. Han, Q. Zhao, J. Du, F. Cheng and J. Chen, J. Mater. Chem. A, 2015, 3, 3320-3324.
- 34. Z. Khan, S. Park, S. M. Hwang, J. Yang, Y. Lee, H.-K. Song, Y. Kim and H. Ko, NPG Asia Mater., 2016, 8, e294.
- 35. Q. Sun, H. Yadegari, M. N. Banis, J. Liu, B. Xiao, B. Wang, S. Lawes, X. Li, R. Li and X. Sun, *Nano Energy*, 2015, **12**, 698–708.

- S. H. Sahgong, S. T. Senthilkumar, K. Kim, S. M. Hwang and Y. Kim, *Electrochem. Commun.*, 2015, 61, 53–56.
- Y. Li, H. Yadegari, X. Li, M. N. Banis, R. Li and X. Sun, *Chem. Commun.*, 2013, 49, 11731– 11733.
- 38. S. Zhang, Z. Wen, K. Rui, C. Shen, Y. Lu and J. Yang, J. Mater. Chem. A, 2015, 3, 2568-2571.
- 39. B. Senthilkumar, Z. Khan, S. Park, I. Seo, H. Ko and Y. Kim, J. Power Sources, 2016, 311, 29-34.