Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supplementary Data

Above Room Temperature Spin Crossover in Thioamide-Functionalised 2,6bis(pyrazol-1-yl)pyridine Iron(II) Complexes.

Max Attwood^a, Hiroki, Akutsu^b, Lee Martin^c, Dyanne Cruickshack^d, Scott S. Turner^a

^aDepartment of Chemistry, University of Surrey, Guildford, UK, GU2 7XH

^bDepartment of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

^cSchool of Science and Technology, Nottingham Trent University, UK, NG1 4FQ

^dRigaku Europe, Unit 44, Monument Park, Chalgrove, Oxfordshire, UK, OX44 7RW.

List of supplementary data Synthesis and characterisation of bppCONH₂ and bppCONHMe

Figure.S1: ¹H NMR (top) and ¹³C NMR (bottom) of ligand bppCSNH₂.

Figure.S2: ¹H NMR (top) and ¹³C NMR (bottom) of **bppCSNHMe**.

Figure.S3: Picture of XRD mounted crystal of $[Fe(bppCSNHMe)_2](BF_4)_2$. MeNO₂ taken at 330K (left) and 360K (right) showing change in colour and opacity due to irreversible loss of solvent.

Figure.S4: Diffraction patterns for [Fe(**bppCSNHMe**)₂](BF₄)₂.MeNO₂ taken at 330K (left) and 360K (right) showing change in crystallinity.

Figure.S5: TGA trace for [Fe(bppCSNH₂)₂](BF₄)₂.2MeNO₂

Figure.S6: DSC trace for [Fe(**bppCSNH**₂)₂](BF₄)₂.2MeNO₂ (top) and [Fe(**bppCSNH**₂)₂](ClO₄)₂.MeNO₂ (bottom), showing loss of solvent and no SCO

Figure.S7: TGA trace for [Fe(bppCSNHMe)₂](BF₄)₂.0.5MeNO₂

Table S1: CCDC numbers for crystal structures

Synthesis and characterisation of bppCONH₂ and bppCONHMe

A solution of SOCl₂ (10 ml) and bppCOOH (0.893 g, 3.5×10^{-3} mols) was reacted at 75°C for 4 hrs under reflux. The condenser was capped with a CaCl₂ tube. Excess SOCl₂ was removed *in vacuo* and the resulting brown solid was dissolved in THF (25 ml). This solution was slowly added to conc. NH₄OH (bppCONH₂ synthesis) or NH₂Me (bppCONHMe synthesis) in ethanol (33%, 5 ml) while stirring. The solution was sealed and left stirring at room temperature for 2 hrs. The solution was concentrated to ca. 5 ml *in vacuo* giving a brown slurry which was filtered and washed with water yielding a white solid which was dried in a vacuum desiccator. The solid was dissolved in the minimum volume of boiling methanol and left in the freezer at -20°C giving white needle crystals.

bppCONH₂ Yield: 0.716 g, (88%). ¹H NMR (400 MHz, DMSO): δ 8.99 (d, J = 2.6 Hz, 2H), 8.57 (s, 1H), 8.22 (s, 2H), 7.92 (d, J = 7.3 Hz, 2H), 7.88 (s, 1H), 6.67 (dd, J = 2.4 Hz, J =1.8 Hz, 2H). ¹³C NMR (400 MHz, DMSO): δ 165.62, 150.64, 148.41, 143.42, 128.84, 109.19, 107.55. MS (ESI, positive scan) m/z calculated = 255.0989 (M+H)+, 277.0808 (M+Na)+; Found = 255.0992 (M+H)+, 277.081 (M+Na)+.

bppCONHMe Yield: 0.797 g, (85%). ¹H NMR (400 MHz, DMSO): δ 9.09 (q, *J* = 4.3 Hz, 1H), 8.99 (d, *J* = 2.5 Hz, 2H), 8.21 (s, 2H), 7.92 (d, *J* = 1.1 Hz, 2H), 6.70 – 6.64 (m, 2H), 2.85 (d, *J* = 4.5 Hz, 3H). ¹³C NMR (400 MHz, DMSO): δ 164.19, 150.66, 148.22, 143.45, 128.84, 109.21, 107.2, 26.95

NMR Ligand Characterisation

Figure.S1: ¹H NMR (top) and ¹³C NMR (bottom) of bppCSNH₂.

330 K

360 K – opaque, no longer crystalline

Figure.S3: Picture of XRD mounted crystal of [Fe(**bppCSNHMe**)₂](BF₄)₂.MeNO₂ taken at 330K (left) and 360K (right) showing change in colour and opacity due to irreversible loss of solvent.

Figure.S4: Diffraction patterns for [Fe(**bppCSNHMe**)₂](BF₄)₂.MeNO₂ taken at 330K (left) and 360K (right) showing change in crystallinity.

TGA and DSC Thermal Analysis

Figure.S5: TGA trace for [Fe(bppCSNH₂)₂](BF₄)₂.2MeNO₂

Figure.S6: DSC trace for [Fe(**bppCSNH**₂)₂](BF₄)₂.2MeNO₂ (top) and [Fe(**bppCSNH**₂)₂](ClO₄)₂.MeNO₂ (bottom), showing loss of solvent and no SCO

Figure.S7: TGA trace for [Fe(bppCSNHMe)₂](BF₄)₂.0.5MeNO₂

 Table S1: CCDC numbers for crystal structures submitted to Cambridge structural database

Compound	CCDC
bppCSNH ₂	1860674
bppCSNHMe	1860675
[Fe(bppCSNH ₂) ₂](BF ₄) ₂ .2MeNO ₂ at 100 K	1860676
[Fe(bppCSNH ₂) ₂](BF ₄) ₂ .2MeNO ₂ at 290 K	1860677
[Fe(bppCSNHMe) ₂](BF ₄) ₂ .MeNO ₂ at 100 K	1860678
[Fe(bppCSNHMe) ₂](BF ₄) ₂ .MeNO ₂ at 290 K	1860679
[Fe(bppCSNHMe) ₂](BF ₄) ₂ .MeNO ₂ at 330 K	1860680
[Fe(bppCSNHMe) ₂](ClO ₄) ₂ at 102 K	1860681
[Fe(bppCSNHMe) ₂](ClO ₄) ₂ at 290 K	1860682
[Fe(bppCSNHMe) ₂](ClO ₄) ₂ at 370 K	1860683