Luminescent Liquid Crystalline Hybrid Materials by Embedding Octahedral Molybdenum Cluster Anions with Soft Organic Shells Derived from Tribenzo[18]crown-6

Philipp Ehni,^a Kevin Guy,^b Max Ebert,^a Stuart Beardsworth,^a Korinna Bader,^a Robert Forschner,^a Andrea Bühlmeyer,^a Noée Dumait,^b Claire Roiland,^b Yann Molard^{*,b} and Sabine Laschat^{*,a}

- ^a Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, sabine.laschat@oc.uni-stuttgart.de
- ^b University of Rennes, CNRS, ISCR UMR 6226, ScanMAT UMS 2001, F-35000 Rennes, France, yann.molard@univ-rennes1.fr

Supporting Information

Table of contents

Experimental data of triphenylene derivatives [Tri(n)]	S2
Mesomorphic properties of triphenylene derivatives [Tri (n)]	
POM textures	S8
DSC traces	S9
XRD data and diffraction patterns	S14
Luminescence spectra	S19
NMR spectra	S24
References	S52

Experimental data of triphenylene derivatives [Tri(n)]

General procedure for the synthesis of the triphenylene crown ethers **Tri(n)** by oxidative cyclization (GP S1)

According to Wöhrle,¹ the respective *o*-terphenyl crown ether **Ter(n)** (41.6 µmol, 1 eq.) was dissolved in abs. CH₂Cl₂ (50 mL) under an N₂ atmosphere and cooled to 0°C. A solution of FeCl₃ (162 mg, 998 µmol, 24 eq.) in MeNO₂ (4 mL) was added dropwise while a stream of nitrogen was bubbled through the solution. After stirring for 15 min at 0°C, the reaction was quenched by the addition of methanol (50 mL). Water (50 mL) was added and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 × 15 mL), the combined organic layers washed with water (2 × 20 mL), dried (MgSO₄) and the solvent removed under reduced pressure. The crude product was purified by recrystallization from acetone and subsequent washing with CH₂Cl₂ (5–10 mL) to yield the desired triphenylene **Tri(n)** as brown solid.

Tris(5,6,9,10-tetrakis(octyloxy)triphenylene)[18]crown-6 [Tri(8)]

Synthesis according to GP S1 with *o*-terphenyl **Ter(8)** (100 mg, 41.6 µmol) and FeCl₃ (162 mg, 998 µmol). Purification by recrystallization from acetone (35 mL) and subsequent washing with cold CH₂Cl₂ (5 mL). Yield: 52 % (51.8 mg, 21.6 µmol), brown solid. ¹H NMR (500 MHz, CDCl₃): $\delta = 0.86-0.93$ (m, 36H, CH₃), 1.24–1.63 (m, 120H, CH₂), 1.84– 1.98 (m, 24H, OCH₂CH₂), 4.10 (t, *J* = 6.6 Hz, 12H, OCH₂), 4.21 (t, *J* = 6.6 Hz, 12H, OCH₂), 4.70 (s, 12H, a-H), 7.71 (s, 6H, 3-H, 2'-H, 5'-H), 7.78 (s, 6H, 3-H, 2'-H, 5'-H), 7.91 (s, 6H, 3-H, 2'-H, 5'-H) ppm. ¹³C NMR (126 MHz, CDCl₃): $\delta = 14.1$ (CH₃), 22.7, 26.2, 26.2, 29.4, 29.4, 29.5, 29.5, 31.9 (CH₂), 69.3 (C-a), 69.5, 69.7 (OCH₂), 106.9, 107.2, 109.5 (C-3, C-2', C-5'), 123.3, 123.6, 124.4 (C-4, C-1', C-6'), 148.6, 148.9, 149.0 (C-1, C-2, C-3', C-4') ppm. FT-IR (ATR): $\tilde{\nu} = 2919$ (s), 2850 (s), 1617 (w), 1514 (s), 1466 (m), 1432 (s), 1386 (m), 1259 (vs), 1169 (vs), 1067 (m), 1027 (m), 941 (w), 903 (w), 836 (m), 798 (w), 723 (w), 616 (w), 604 (w), 452 (w) cm⁻¹. MS (MALDI-TOF): *m/z* calcd. for [C₁₅₆H₂₃₄O₁₈⁺ (M⁺)]: 2396.7; found: 2391.2. CHN analysis calcd. (%) for C₁₅₆H₂₃₄O₁₈ (2397.57): C 78.15, H 9.84; found: C 77.93, H 9.91.

Tris(5,6,9,10-tetrakis(decyloxy)triphenylene)[18]crown-6 [Tri(10)]

Synthesis according to GP S1 with *o*-terphenyl **Ter(10)** (100 mg, 36.5 µmol) and FeCl₃ (142 mg, 876 µmol). Purification by recrystallization from acetone (35 mL) and subsequent washing with cold CH₂Cl₂ (5 mL). Yield: 41 % (40.7 mg, 14.9 µmol), brown solid. ¹H NMR (700 MHz, CDCl₃): δ = 0.83–0.92 (m, 36H, CH₃), 1.20–1.61 (m, 168H, CH₂), 1.84–1.98 (m, 24H, OCH₂CH₂), 4.09 (t, *J* = 6.6 Hz, 12H, OCH₂), 4.21 (t, *J* = 6.6 Hz, 12H, OCH₂), 4.70 (s, S2

12H, a-H), 7.70 (s, 6H, 3-H, 2'-H, 5'-H), 7.78 (s, 6H, 3-H, 2'-H, 5'-H), 7.90 (s, 6H, 3-H, 2'-H, 5'-H) ppm. ¹³C NMR (176 MHz, CDCl₃): δ = 14.1 (CH₃), 22.7, 26.2, 26.3, 29.4, 29.5, 29.6, 29.6, 29.7, 29.7, 29.8, 32.0 (CH₂), 69.3 (C-a), 69.5, 69.7 (OCH₂), 107.0, 107.2, 109.5 (C-3, C-2', C-5'), 123.3, 123.6, 124.4 (C-4, C-1', C-6'), 148.6, 149.0, 149.0 (C-1, C-2, C-3', C-4') ppm. FT-IR (ATR): $\tilde{\nu}$ = 2917 (s), 2849 (s), 1617 (w), 1512 (s), 1466 (m), 1432 (s), 1387 (m), 1259 (vs), 1169 (vs), 1069 (m), 1028 (m), 925 (w), 836 (m), 797 (w), 722 (w), 604 (w) cm⁻¹. MS (MALDI-TOF): *m*/*z* calcd. for [C₁₈₀H₂₈₂O₁₈⁺ (M⁺)]: 2733.1; found: 2730.6. HRMS (ESI): *m*/*z* calcd. for [C₁₈₀H₂₈₂O₁₈⁺: 2756.1077, found: 2756.0553. CHN analysis calcd. (%) for C₁₈₀H₂₈₂O₁₈ (2397.57): C 79.07, H 10.40; found: C 78.59, H 10.07.

Tris(5,6,9,10-tetrakis(undecyloxy)triphenylene)[18]crown-6 [Tri(11)]

Synthesis according to GP S1 with *o*-terphenyl **Ter(11)** (60.0 mg, 20.6 µmol) and FeCl₃ (80.3 mg, 495 µmol). Purification by washing with cold CH₂Cl₂ (5 mL). Yield: 67 % (40.0 mg, 13.8 µmol), brown solid. ¹H NMR (500 MHz, CDCl₃): $\delta = 0.85-0.90$ (m, 36H, CH₃), 1.21–1.45 (m, 172H, CH₂), 1.47–1.54 (m, 12H, OCH₂CH₂CH₂) 1.84–1.97 (m, 24H, OCH₂CH₂), 4.09 (t, J = 6.6 Hz, 12H, OCH₂), 4.21 (t, J = 6.6 Hz, 12H, OCH₂), 4.69 (s, 12H, a-H), 7.70 (s, 6H, 3-H, 2'-H, 5'-H), 7.78 (s, 6H, 3-H, 2'-H, 5'-H), 7.90 (s, 6H, 3-H, 2'-H, 5'-H) ppm. ¹³C NMR (126 MHz, CDCl₃): $\delta = 14.1$ (CH₃), 22.7, 26.2, 26.3, 29.4, 29.5, 29.6, 29.6, 29.7, 32.0 (CH₂), 69.3 (C-a), 69.5, 69.7 (OCH₂), 106.9, 107.2, 109.5 (C-3, C-2', C-5'), 123.3, 123.7, 124.4 (C-4, C-1', C-6'), 148.6, 149.0, 149.0 (C-1, C-2, C-3', C-4') ppm. FT-IR (ATR): $\tilde{\nu} = 918$ (s), 2849 (m), 1617 (w), 1516 (m), 1467 (w), 1433 (s), 1386 (w), 1260 (vs), 1170 (vs), 1070 (m), 1030 (m), 1064 (w), 934 (w), 836 (m), 721 (w) cm⁻¹. MS (MALDI-TOF): *m/z* calcd. for [C₁₉₂H₃₀₆O_{18⁺} (M⁺)]: 2902.3; found: 2899.4. CHN analysis calcd. (%) for C₁₉₂H₃₀₆O₁₈ (2902.54): C 79.45, H 10.63; found: C 79.28, H 10.47.

Tris(5,6,9,10-tetrakis(dodecyloxy)triphenylene)[18]crown-6 [Tri(12)]

Synthesis according to GP S1 with *o*-terphenyl **Ter(12)** (60.0 mg, 19.5 µmol) and FeCl₃ (75.9 mg, 468 µmol). Purification by washing with cold CH₂Cl₂ (5 mL). Yield: 44 % (26.5 mg, 8.63 µmol), brown solid. ¹H NMR (500 MHz, CDCl₃): δ = 0.85–0.89 (m, 36H, CH₃), 1.20–1.45 (m, 188H, CH₂), 1.47–1.54 (m, 12H, OCH₂CH₂CH₂) 1.84–1.97 (m, 24H, OCH₂CH₂), 4.09 (t, *J* = 6.6 Hz, 12H, OCH₂), 4.21 (t, *J* = 6.6 Hz, 12H, OCH₂), 4.69 (s, 12H, a-H), 7.70 (s, 6H, 3-H, 2'-H, 5'-H), 7.78 (s, 6H, 3-H, 2'-H, 5'-H), 7.90 (s, 6H, 3-H, 2'-H, 5'-H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 14.1 (CH₃), 22.7, 26.2, 26.2, 29.4, 29.5, 29.6, 29.6, 29.7, 29.8, 29.8, 32.0 (CH₂), 68.5 (C-a), 69.5, 69.7 (OCH₂), 106.9, 107.2, 109.5 (C-3, C-2', C-5'), 123.3, 123.6,

124.4 (C-4, C-1', C-6'), 148.6, 149.0, 149.0 (C-1, C-2, C-3', C-4') ppm. FT-IR (ATR): $\tilde{\nu}$ = 2918 (vs), 2849 (s), 1617 (w), 1515 (s), 1466 (m), 1433 (s), 1387 (w), 1260 (vs), 1170 (vs), 1070 (m), 1044 (m), 1033 (m), 1022 (m), 940 (w), 909 (w), 861 (w), 835 (m), 720 (m) cm⁻¹. MS (MALDI-TOF): *m*/*z* calcd. for [C₂₀₄H₃₃₀O₁₈⁺ (M⁺)]: 3070.5; found: 3068.2. CHN analysis calcd. (%) for C₂₀₄H₃₃₀O₁₈ (3070.87): C 79.79, H 10.83; found: C 79.63, H 10.72.

Tris(5,6,9,10-tetrakis(tetradecyloxy)triphenylene)[18]crown-6 [**Tri**(14)]

Synthesis according to GP S1 with *o*-terphenyl **Ter(14)** (100 mg, 29.3 µmol) and FeCl₃ (114 mg, 703 µmol). Purification by washing with cold CH₂Cl₂ (15 mL). Yield: 44 % (44.0 mg, 12.9 µmol), brown solid. ¹H NMR (700 MHz, CDCl₃): δ = 0.85–0.91 (m, 36H, CH₃), 1.21–1.61 (m, 264H, CH₂), 1.85–1.97 (m, 24H, OCH₂CH₂), 4.09 (t, *J* = 6.6 Hz, 12H, OCH₂), 4.21 (t, *J* = 6.6 Hz, 12H, OCH₂), 4.70 (s, 12H, a-H), 7.70 (s, 6H, 3-H, 2'-H, 5'-H), 7.78 (s, 6H, 3-H, 2'-H, 5'-H), 7.90 (s, 6H, 3-H, 2'-H, 5'-H) ppm. ¹³C NMR (176 MHz, CDCl₃): δ = 14.1 (CH₃), 22.7, 26.2, 26.3, 29.4, 29.5, 29.6, 29.6, 29.7, 29.7, 29.8, 29.8, 31.9 (CH₂), 69.3 (C-a), 69.5, 69.7 (OCH₂), 106.9, 107.2, 109.5 (C-3, C-2', C-5'), 123.3, 123.6, 124.4 (C-4, C-1', C-6'), 148.6, 149.0, 149.0 (C-1, C-2, C-3', C-4') ppm. FT-IR (ATR): $\tilde{\nu}$ = 2916 (vs), 2848 (vs), 1617 (w), 1514 (s), 1467 (m), 1434 (s), 1387 (w), 1260 (vs), 1171 (vs), 1056 (m), 1039 (m), 1025 (m), 929 (w), 897 (w), 859 (w), 836 (m), 796 (w), 768 (w), 721 (w), 651 (w), 616 (w), 604 (w), 451 (w) cm⁻¹. MS (MALDI-TOF): *m/z* calcd. for [C₂₂₈H₃₇₈O₁₈ + (M⁺)]: 3406.9; found: 3429.7725. CHN analysis calcd. (%) for C₂₂₈H₃₇₈O₁₈ (3407.51): C 80.37, H 11.18; found: C 79.98, H 10.89.

Tris(5,6,9,10-*tetrakis*(*hexadecyloxy*)*triphenylene*)[18]*crown*-6 [**Tri**(16)]

Synthesis according to GP S1 with *o*-terphenyl **Ter(16)** (100 mg, 26.6 µmol) and FeCl₃ (103 mg, 638 µmol). Purification by washing with cold CH₂Cl₂ (15 mL). Yield: 10 % (9.92 mg, 2.65 µmol), brown solid. ¹H NMR (500 MHz, CDCl₃): δ = 0.84–0.92 (m, 36H, CH₃), 1.19–1.62 (m, 312H, CH₂), 1.84–1.99 (m, 24H, OCH₂CH₂), 4.09 (t, *J* = 6.6 Hz, 12H, OCH₂), 4.21 (t, *J* = 6.6 Hz, 12H, OCH₂), 4.70 (s, 12H, a-H), 7.70 (s, 6H, 3-H, 2'-H, 5'-H), 7.78 (s, 6H, 3-H, 2'-H, 5'-H), 7.90 (s, 6H, 3-H, 2'-H, 5'-H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 14.1 (CH₃), 22.7, 26.2, 26.3, 29.4, 29.5, 29.6, 29.6, 29.6, 29.7, 29.8, 29.8, 29.8, 31.9 (CH₂), 69.3 (C-a), 69.5, 69.7 (OCH₂), 106.9, 107.2, 109.5 (C-3, C-2', C-5'), 123.3, 123.6, 124.4 (C-4, C-1', C-6'), 148.6, 148.9, 149.0 (C-1, C-2, C-3', C-4') ppm. FT-IR (ATR): $\tilde{\nu}$ = 2916 (vs), 2848 (s), 1617 (w), 1515 (m), 1467 (m), 1434 (m), 1387 (w), 1261 (s), 1171 (s), 1068 (w), 1039 (w), 1023 (w), 941 (w), 916 (w), 886 (w), 860 (w), 836 (w), 796 (w), 771 (w), 721 (w), 632 (w), 616 (w), 603 (w) cm⁻¹.

MS (MALDI-TOF): m/z calcd. for $[C_{252}H_{427}O_{18}^+ (M^+)]$: 3744.3; found: 3737.5. CHN analysis calcd. (%) for $C_{252}H_{426}O_{18}$ (3744.16): C 80.84, H 11.47; found: C 80.46, H 11.47.

Mesomorphic properties of triphenylene derivatives [Tri(n)]

Table S1 DSC results of the triphenylene derivatives Tri(n) (2nd cooling). Phase transition temperatures *T* are given in °C and the transition enthalpies in kJ / mol.^{a,b}

Compound	Cr	$T_{\rm m}$ (ΔH)	Col _h	$T_{\rm c}$ (ΔH)	Ι
Tri(8)	٠	147 (-10.3)	•	214 (-28.7)	•
Tri(10)	G	72 (-)	•	176 (-8.5)	•
Tri(11)	•	121 (-90.2)	•	168 (-19.0)	•
Tri(12)	•	71 (-69.9)	•	157 (-14.4)	•
Tri(14) ^c	•	42 (-16.3)	•	142 (-17.0)	•
Tri(16) ^d	•	53 (-84.5)	•	134 (-15.6)	•

^a Heating/cooling rate 5 K / min

^b The following phases were observed: crystalline Cr, glass G, columnar hexagonal Col_h, columnar Col_x, isotropic I

^c An additional crystal-to-crystal transition was detected at 85°C upon 2nd heating.

^d An additional crystal-to-crystal transition was detected at 81°C upon 2nd heating.

Under the POM triphenylenes **Tri**(**n**) exhibited fan-shaped and conical fan textures typical for columnar mesophases upon cooling from the isotropic phase, as illustrated in Figure S1a and S1b for the compounds **Tri**(**8**) and **Tri**(**14**).

DSC experiments revealed enantiotropic mesomorphism for all members of the series. Except for compound **Tri(10)**, which showed a glass transition at 72°C, all other derivatives showed clear crystallization (see Table S1). Both melting and clearing points decreased with increasing chain lengths from 147°C and 214°C for **Tri(8)** to 33°C and 134°C for **Tri(16)**, resulting in broad mesophases, particularly for **Tri(10)**, **Tri(14)** and **Tri(16)** (Figure S1c).

Figure S1 a) Fan-shaped POM textures of **Tri(8)** (207°C, 5 K / min) and b) **Tri(14)** (131°C, 5 K / min) upon cooling from the isotropic phase (magnification: ×200). c) Temperature ranges in K of the mesophases of triphenylenes **Tri(n)** for different chain lengths n. The phase transitions and phase widths were determined by DSC upon 2^{nd} cooling. The DSC curves are shown in Fig. S9–S14.

XRD studies of the triphenylene **Tri(8)** revealed three distinct reflexes in the small-angle section in a ratio of $1 : 1/\sqrt{3} : 1/2$, which were indexed as (10), (11), (20) of a columnar hexagonal phase with *p6mm* symmetry (Table S2). In addition, a weak (001) reflex in the wide-angle region at 3.93 Å due to $\pi - \pi$ interactions of the triphenylenes was observed. The (001) reflex together with the broad halo around 4.2 Å indicated the presence of an ordered Col_{ho} phase with lattice parameters a = 32.34 Å and c = 3.93 Å. Similar results were obtained for **Tri(10)** and **Tri(11)**, albeit with increased lattice parameters due to the increased chain lengths. For **Tri(14)** a Col_h phase with *p6mm* symmetry was found.

Table S2 Results of the XRD experiments for the triphenylenes Tri(n).

Tri(n)	Mesophase	Lattice spacing / Å	<i>d</i> spacing / Å exp. (calcd.)	Miller indices
Tri(8)	Col _{ho}	<i>a</i> = 32.34	28.01	(10)
	р6тт	<i>c</i> = 3.93	16.12 (16.17)	(11)
	(180°C)		13.97 (14.00)	(20)
			3.9	(001) π-π
			4.2	Halo

Tri(10)	Colho	<i>a</i> = 35.62	30.85	(10)
	рбтт	<i>c</i> = 4.03	17.84 (17.81)	(11)
	(140°C)		15.51 (15.42)	(20)
			4.0	(001) π-π
			4.6	Halo
Tri(11)	Col _h	<i>a</i> = 36.87	31.93	(10)
	р6тт	<i>c</i> = 4.11	18.34 (18.43)	(11)
	(160°C)		15.85 (15.96)	(20)
			4.1	(001) π-π
			4.4	Halo
Tri(14)	Col _h	<i>a</i> = 41.46	35.90	(10)
	<i>р6тт</i> (120°С)		4.0	Halo

POM textures

Figure S2 Observed POM textures of the synthesized compounds upon cooling from the isotropic phase (cooling rate: 5 K / min).

DSC traces

Figure S3 DSC traces of **Ter(8)** (2nd cooling, 2nd heating, 5 K / min).

Figure S4 DSC traces of **Ter(10)** (2nd cooling, 2nd heating, 5 K / min).

Figure S5 DSC traces of Ter(11) (2nd cooling, 3rd heating, 10 K / min).

Figure S6 DSC traces of Ter(12) (2nd cooling, 2nd heating, cooling rate: 10 K / min).

Figure S7 DSC traces of Ter(14) (2nd cooling, 3rd heating, cooling rate: 5 K / min).

Figure S8 DSC traces of **Ter(16)** (2^{nd} cooling, 2^{nd} heating, 5 K / min).

Figure S9 DSC traces of **Tri(8)** (2nd cooling, 2nd heating, 5 K / min).

Figure S10 DSC traces of **Tri(10**) (2nd cooling, 2nd heating, 5 K / min).

Figure S11 DSC traces of **Tri(11)** (2nd cooling, 2nd heating, 10 K / min).

Figure S12 DSC traces of Tri(12) (2nd cooling, 2nd heating, 10 K / min).

Figure S1 DSC traces of Tri(14) (2nd cooling, 2nd heating, 5 K / min).

Figure S2 DSC traces of Tri(16) (2nd cooling, 2nd heating, 5 K / min).

Figure S3 DSC traces of Ter(14) \cdot Cs_{0.5}X1_{0.25} (2nd cooling, 2nd heating, 5 K / min).

Figure S4 DSC traces of Ter(16) · Cs0.5X10.25 (2nd cooling, 2nd heating, 5 K / min).

Figure S5 DSC traces of Ter(14) · Cs0.5X20.25 (3rd cooling, 2nd heating, 5 K / min).

Figure S6 DSC traces of $Ter(16) \cdot Cs_{0.5}X2_{0.25}$ (3rd cooling, 3rd heating, 10 K / min).

XRD data and diffraction patterns

Figure S7 WAXS diffractogram of **Ter(8)** at 61°C (logarithmic scale) with the corresponding diffraction patterns (SAXS left and WAXS right).

Figure S20 WAXS diffractogram of **Ter(10)** at 70°C (logarithmic scale) with the corresponding diffraction patterns (SAXS left and WAXS right).

Figure S21 WAXS diffractogram of **Ter(12)** at 90°C (logarithmic scale) with the corresponding diffraction patterns (SAXS left and WAXS right).

Figure S22 WAXS diffractogram of **Ter(14)** at 45°C (logarithmic scale) with the corresponding diffraction patterns (SAXS left and WAXS right).

Figure S23 WAXS diffractogram of **Ter(16)** at 70°C (logarithmic scale) with the corresponding diffraction patterns (SAXS left and WAXS right).

Figure S24 WAXS diffractogram of **Tri(8)** at 180°C (logarithmic scale) with the corresponding diffraction patterns (SAXS left and WAXS right).

Figure S25 WAXS diffractogram of **Tri(10)** at 140°C (logarithmic scale) with the corresponding diffraction patterns (SAXS left and WAXS right).

Figure S86 WAXS diffractogram of **Tri(11)** at 160°C (logarithmic scale) with the corresponding diffraction patterns (SAXS left and WAXS right).

Figure S9 WAXS diffractogram of **Tri(14)** at 120°C (logarithmic scale) with the corresponding diffraction patterns (SAXS left and WAXS right).

Figure S10 WAXS diffractogram of $Ter(14) \cdot Cs_{0.5}X1_{0.25}$ at 93°C (logarithmic scale) with the corresponding diffraction patterns (SAXS left and WAXS right).

Figure S11 WAXS diffractogram of $Ter(16) \cdot Cs_{0.5}X1_{0.25}$ at 112°C (logarithmic scale) with the corresponding diffraction patterns (SAXS left and WAXS right).

Figure S30 WAXS diffractogram of $Ter(14) \cdot Cs_{0.5}X2_{0.25}$ at 140°C (logarithmic scale) with the corresponding diffraction patterns (SAXS left and WAXS right).

Figure S31 WAXS diffractogram of $Ter(16) \cdot Cs_{0.5}X2_{0.25}$ at 131°C (logarithmic scale) with the corresponding diffraction patterns (SAXS left and WAXS right).

Luminescence spectra

Figure S32 Temperature dependent solid state emission spectra of $Ter(14) \cdot Cs_{0.5}X1_{0.25}$ from 30°C (top, brown) up to 170°C (bottom, black) in steps of 10 K.

Figure S12 Temperature dependent solid state emission spectra of $Ter(16) \cdot Cs_{0.5}X1_{0.25}$ from 30°C (top, brown) up to 170°C (bottom, black) in steps of 10 K.

Figure S13 Temperature dependent solid state emission spectra of $Ter(14) \cdot Cs_{0.5}X2_{0.25}$ from 30°C (top, black) up to 170°C (bottom, brown) in steps of 10 K.

Figure S14 Temperature dependent solid state emission spectra of $Ter(16) \cdot Cs_{0.5}X2_{0.25}$ from 30°C (top, black) up to 170°C (bottom, brown) in steps of 10 K.

Figure S15 Solid state emission lifetime decay (2nd order) of **Ter(14)** · **Cs0.5X10.25** at ambient temperature (top). Excitation wavelength: $\lambda = 375$ nm; signal detection at $\lambda = 735-745$ nm. The respective residual (bottom) represents the goodness of fit.

Figure S16 Solid state emission lifetime decay (2nd order) of **Ter(16)** · **Cs**_{0.5}**X1**_{0.25} at ambient temperature (top). Excitation wavelength: $\lambda = 375$ nm; signal detection at $\lambda = 735-745$ nm. The respective residual (bottom) represents the goodness of fit.

Figure S17 Solid state emission lifetime decay (2nd order) of **Ter(14)** · **Cs**_{0.5}**X2**_{0.25} at ambient temperature (top). Excitation wavelength: $\lambda = 375$ nm; signal detection at $\lambda = 690-700$ nm. The respective residual (bottom) represents the goodness of fit.

Figure S18 Solid state emission lifetime decay (2nd order) of **Ter(16)** · **Cs**_{0.5}**X2**_{0.25} at ambient temperature (top). Excitation wavelength: $\lambda = 375$ nm; signal detection at $\lambda = 680-690$ nm. The respective residual (bottom) represents the goodness of fit.

NMR spectra

Figure S40 Solid state MAS ¹³³Cs NMR spectra of a) Cs₂X2, b) Ter(14) · Cs_{0.5}X2_{0.25}, c) Ter(14) · Cs_{0.5}X1_{0.25} and d) Cs₂X1. X1 = $[Mo_6Br_{14}]^{2-}$; X2 = $[Mo_6I_8(C_2F_5COO)_6]^{2-}$.

 $7.0 \ 6.8 \ 6.6 \ 6.4 \ 6.2 \ 6.0 \ 5.8 \ 5.6 \ 5.4 \ 5.2 \ 5.0 \ 4.8 \ 4.6 \ 4.4 \ 4.2 \ 4.0 \ 3.8 \ 3.6 \ 3.4 \ 3.2 \ 3.0 \ 2.8 \ 2.6 \ 2.4 \ 2.2 \ 2.0 \ 1.8 \ 1.6 \ 1.4 \ 1.2 \ 1.0 \ 0.8 \ \delta/ppm$

Figure S41 Stacked ¹H-NMR spectra of the *o*-terphenyls Ter(n).

Figure S42 Stacked ¹H-NMR spectra of the triphenylenes Tri(n).

210 200 190 180 170 160 150 140 -10 ppm

 $150 \ 145 \ 140 \ 135 \ 130 \ 125 \ 120 \ 115 \ 110 \ 105 \ 100 \ 95 \ 90 \ 85 \ 80 \ 75 \ 70 \ 65 \ 60 \ 55 \ 50 \ 45 \ 40 \ 35 \ 30 \ 25 \ 20 \ 15 \ 10 \ 5 \ (\delta/pm$

- I - I	· · ·	· · ·	1 1	· · ·	· · ·	1		· · ·			· · ·	· · ·	· · · ·		
150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
							δ	/ ppm							

				Parameter	Value
				Title	Jul20-2016.140.fid
DG				Comment	2 Ehni EHN-C14-ter
	50 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50	6,66 6,7 7,7 8,8 8,8 8,8 8,8 8,8 8,8 8,8 8,8 8	.07	Origin	Bruker BioSpin GmbH
			11	Owner	guest
				Site	
				Instrument	spect
	_			Author	
	R			Solvent	CDCl3
	R			Temperature	296.8
				Pulse Sequence	zg30
	$\frown \circ \frown \lor$			Experiment	1D
				Probe	5 mm PABBO BB-1H/ D Z- GRD Z800701/ 0072
				Number of Scans	64
	R ^r V O			Receiver Gain	114.0
				Relaxation Delay	2.0000
	Ŭ Į Į			Pulse Width	11.2300
				Presaturation Frequency	
	'` D			Acquisition Time	1.5860
	ĸ			Acquisition Date	2016-07-20T14:56:00
				Modification Date	2016-07-20T14:57:06
	·····································			Class	
	R = U			Purity	99.57 %
	OC ₁₄ H ₂₉		1	Spectrum Quality	-0.687
				Spectrometer Frequency	500.16
				Spectral Width	10330.6
				Lowest Frequency	-2094.5
				Nucleus	1H
اط اططیا ہے۔ 5.77 6.00 5.89 5.72	년 년 년 12.12 11.78 11.94	الطے اطبے اللے اللہ اللہ اللہ 12.25 12.25 12.00 12.31 254.68 35 54		Acquired Size	16384
			<u></u>	Spectral Size	65536
7.5 7.0 6.5 6.0 5.5	5.0 4.5 4.0 3.5 3.0 δ/ppm	2.5 2.0 1.5 1.0 0.5	0.0		

7.26 CDCl3	5.59 5.57 5.66 5.66 5.65 5.55 5.55 5.55	4.50 3.34 3.64 3.65 3.65 3.66 3.66 3.66 3.66	128 129 129 129 129 129 129 129 129 129 129	0.07 ****	
Ĩ				Parameter	Value
				1 Title	Jul17-2018.740.fid
				2 Comment	02 Ebert Ter-C16-18C6
				3 Origin	Bruker BioSpin GmbH
		P		4 Owner	guest
		R I		5 Site	
			,R	6 Instrument	spect
				7 Author	
		\sim		8 Solvent	CDCI3
		r o Y		9 Temperature	298.0
		R A Ó Ó		10 Pulse Sequence	zg30
				11 Experiment	1D
				12 Probe	5 mm PABBO BB/ 19F-1H/ D Z-GRD Z108618/ 080(
		R' Ý ÌO O'		12 Number of Corre	
				13 Number of Scans	32 182.6
				15 Relayation Delay	1 5000
				16 Pulse Width	13 7000
			R	17 Presaturation Freq	uency
		l R		18 Acauisition Time	4.0894
		IX.		19 Acquisition Date	2018-07-17T16:51:00
				20 Class	
		•OC ₁₆ H;	33	21 Purity	100.00 %
		R = `		22 Spectrum Quality	0.001
				23 Spectrometer Freq	uency400.10
		\sim OC ₁₆ H	33	24 Spectral Width	8012.8
				25 Lowest Frequency	-1545.6
		I.	// 1	26 Nucleus	1H
				27 Acquired Size	32768
		**	da da la X	28 Spectral Size	65536
	IMiI	//'/			
		11.98 11.93 11.84	12.35 12.04 303.85 36.24	· · · · · · · · · · · · · · · · · · ·	
	7.0 6.5 6.0 5.5	5.0 4.5 4.0 3.5 δ / ppm	3.0 2.5 2.0 1.5 1.0 0	0.5 0.0	

δ / ppm

				Parameter	Value
				Title	Sep15-2016.12.fid
		m a <mark>n</mark> m		Comment	02 Ehni EHN-C14tri CDCl3 13C{1H}
5 1 1 2	നഗന ന റഗ			Origin	Bruker BioSpin GmbH
149.0	124.3 123.6 109.4 100.7 100.7	77.20 76.84 76.84 76.84 69.67 69.67 69.32	31.95 29.71 29.71 22.71 22.71 22.71 22.71 22.71 22.71 14.12	Owner	guest
\checkmark		\mathbf{Y} \mathbf{Y}		Site	
		<u></u>		Instrument	spect
				Author	
	\frown			Solvent	CDC13
	\sim		1	Temperature	298.0
		Ŭ]		Pulse Sequence	zgpg30
				Experiment	1D
				Probe	5 mm PABBO BB-1H/ D Z- GRD Z123726/ 0024
	\sim			Number of Scans	722
				Receiver Gain	182.5
				Relaxation Delay	5.0000
	00			Pulse Width	12.0000
		29 14 29		Presaturation Frequency	
	C ₁₄ H ₂₉ O	7		Acquisition Time	0.7864
				Acquisition Date	2016-09-16T12:05:00
	Ý			Modification Date	2016-09-16T13:07:11
				Class	
	ſ	Ι I		Purity	99.68 %
		<u>ب</u>		Spectrum Quality	0.000
				Spectrometer Frequency	176.12
	00	-14 ⁻¹²⁹		Spectral Width	41666.7
				Lowest Frequency	-3224.6
anajoo ata ay	un production of the state of the		and the second	Nucleus	13C
				Acquired Size	32768
				Spectral Size	65536
				1 1	
150 140	130 120 110 100	90 80 70 60 δ/ppm	50 40 30 20	10 0	
		o / ppm			

References

1 T. Wöhrle, J. Kirres, M. Kaller, M. Mansueto, S. Tussetschläger and S. Laschat, *J. Org. Chem.*, 2014, **79**, 10143–10152.