Supporting Information (Pages: S1-S49)

Six-coordinate $[Co^{III}(L)_2]^z$ (z = 1–, 0, 1+) complexes of an azo-appended *o*-aminophenolate in amidate(2–) and iminosemiquinonate π -radical (1–) redox-levels: existence of valence-tautomerism

Amit Rajput, Anuj Kumar Sharma, Suman K. Barman, Francesc Lloret and Rabindranath Mukherjee*

Figures

Fig. S1 ESI-MS spectrum of $[Co(L^1)_2]$ 1.

Fig. S2 IR spectrum of $[Co(L^1)_2]$ **1**.

Fig. S3 CVgram (100 mV/s) of one-electron oxidized 1.0 mM solution of $[Co(L^1)_2]$ 1.

Fig. S4 CVgram (100 mV/s) of one-electron reduced 1.0 mM solution of $[Co(L^1)_2]$ 1, $[1]^{1-}$ species.

Fig. S5 ESI–MS of 2.

Fig. S6 ESI–MS of 3.

Fig. S7 CVgram (100 mV/s) of 1.0 mM solution of 2.

Fig. S8 CVgram (100 mV/s) of 1.0 mM solution of **3**.

Fig. S9 IR spectrum of $[Co(L^1)_2][PF_6]$ 2CH₂Cl₂ 2.

Fig. S10 IR spectrum of $[Co^{III}(\eta^5-C_5H_5)_2][Co(L^1)_2]$ ·MeCN **3**.

Fig. S11 ¹H NMR spectrum (400 MHz, $CDCl_3$) of $[Co(L^1)_2]$ 1 at 298 K.

Fig. S12 Variable Temperature (VT) ¹H NMR spectrum (400 MHz, CDCl₃) of [Co(L¹)₂] 1.

Fig. S13 ¹H NMR spectrum (400 MHz, CDCl₃) of [Co(L¹)₂][PF₆]·2CH₂Cl₂ **2** at 298 K.

Fig. S14 Variable Temperature (VT) ¹H NMR spectrum (400 MHz, CDCl₃) of $[Co(L^1)_2][PF_6]$ ·2CH₂Cl₂ 2.

Fig. S15 ¹³C NMR spectrum (400 MHz, CDCl₃) of [Co(L¹)₂][PF₆]·2CH₂Cl₂ **2** at 298 K. **Fig. S16** 2D HMQC (Heteronuclear Multiple Quantum Coherence) of (400 MHz, CDCl₃)

 $[Co(L^1)_2][PF_6] \cdot 2CH_2Cl_2 2.$

Fig. S17 ¹H NMR spectrum (400 MHz, CDCl₃) of $[Co^{III}(\eta^5-C_5H_5)_2][Co(L^1)_2]$ **3** 298 K.

Fig. S18 Variable Temperature (VT) ¹H NMR spectrum (400 MHz, CDCl₃) of $[Co^{III}(\eta^5 - C_5H_5)_2][Co(L^1)_2]$ **3**.

Fig. S19 ¹³C NMR spectrum (400 MHz, CDCl₃) of $[Co^{III}(\eta^5-C_5H_5)_2][Co(L^1)_2]$ **3** 298 K.

Fig. S20. Optimized-structure for [1]^{1–}, where no spin-population is found.

Fig. S21 X-band EPR spectra recorded for $[Co^{III}(\eta^5-C_5H_5)_2][Co(L^1)_2]$ ·MeCN **3** as solid (298 K).

Fig. S22 UV-Vis-NIR spectra of 1-3 in CH_2Cl_2 .

Fig. S23 Absorption spectral measurements on ligand in neutral, dianionic and radical-anion forms recorded in CH_2Cl_2

Fig. S24 TD-DFT-calculated electronic spectra of 1, $[1]^{1+}$ and $[1]^{1-}$.

Fig. S25. Representative molecular-orbitals involved in TD-DFT of 1.

Fig. S26 Representative molecular orbitals involved in TD-DFT of $[1]^{1+}$.

Fig. S27 Representative molecular orbitals involved in TD-DFT of [1]^{1–}.

Tables

Table S1. Data collection and structure refinement parameters for $[Co(L^1)_2]$ **1**, $[Co^{III}(L^1)_2][PF_6] \cdot 2CH_2Cl_2$ **2**, and $[Co^{III}(\eta^5 - C_5H_5)_2][Co(L^1)_2] \cdot MeCN$ **3**.

Table S2. Comparison of X-ray determined experimental bond lengths with the calculated bond lengths from metrical oxidation state MOS (in parentheses) of $[Fe(L^1)_2]$ and $[Fe(L^1)_2]^+$.

 Table S3. DFT-optimized cartesian coordinates of 1.

Table S4. DFT-optimized coordinates of $[1]^{1+}$.

Table S5. DFT-optimized coordinates of [1]^{1–}.

Table S6. X-ray structural and DFT-optimized (in parentheses) bond lengths of 1, [1]¹⁺ and [1]¹⁻.

Table S7. TD-DFT-calculated electronic transitions of 1.

Table S8. TD-DFT-calculated electronic transitions of $[1]^{1+}$.

Table S9. TD-DFT-calculated electronic transitions of [1]^{1–}.

Fig. S1. Positive-ion ESI–MS spectrum of 1 $\{[Co(L^1)_2] + H^+\}$.

Fig. S2 IR spectrum of $[Co(L^1)_2]$ 1.

Fig. S3 CVgram (100 mV/s) of coulometrically-generated $1e^-$ oxidized 1.0 mM solution of $[Co(L^1)_2]$ **1** in CH₂Cl₂ (0.1 M in TBAP) at a platinum working electrode.

Fig. S4 CVgram (100 mV/s) of coulometrically-generated $1e^{-1}$ reduced 1.0 mM solution of $[Co(L^{1})_{2}]$ **1** in CH₂Cl₂ (0.1 M in TBAP) at a platinum working electrode.

Fig. S5 (a) Positive ESI–MS spectrum of $[Co(L^1)_2]^+$ (cationic part) and (b) negative ESI-MS Spectrum of PF_6^- (anionic part) of $[Co^{III}(L^1)_2][PF_6] \cdot 2CH_2Cl_2 \mathbf{2}$.

Fig. S6 (a) Positive ESI–MS spectrum of $[Co^{III}(\eta^5-C_5H_5)_2]^+$ (cationic part) and (b) negative ESI-MS spectrum of $[Co(L^1)_2]^-$ (anionic part) of $[Co^{III}(\eta^5-C_5H_5)_2]^ [Co(L^1)_2]\cdot CH_3CN$ **3**.

Fig. S7 Cyclic voltammogram (100 mV/s) of a 1.0 mM solution of $[Co(L^1)_2][PF_6] \cdot 2CH_2Cl_2$ 2 in CH_2Cl_2 (0.1 M in TBAP) at a platinum working electrode.

Fig. S8 Cyclic voltammogram (100 mV/s) of a 1.0 mM solution of $[Co^{III}(\eta^5 - C_5H_5)_2][Co(L^1)_2]\cdot CH_3CN$ **3** in CH₂Cl₂ (0.1 M in TBAP) at a platinum working electrode.

Fig. S9 IR spectrum of $[Co(L^1)_2][PF_6]$ $2CH_2Cl_2$ 2.

Fig. S10 IR spectrum of $[Co^{III}(\eta^5-C_5H_5)_2][Co(L^1)_2]$ MeCN 3.

Fig. S11 ¹H NMR spectrum (400 MHz, CDCl₃) of $[Co(L^1)_2]$ **1** at 298 K. Peak denoted by * and x are due to CHCl₃ and solvent impurity, respectively.

Fig. S12 Variable Temperature (233-313 K) ¹H NMR spectrum (400 MHz, CDCl₃) of [Co(L¹)₂] 1.

Fig. S13 ¹H NMR spectrum (400 MHz, CDCl₃) of $[Co(L^1)_2][PF_6] \cdot 2CH_2Cl_2$ **2** at 298 K. Peaks denoted by ***** and **x** are due to CHCl₃ and H₂O respectively.

233 K

273 K

313 K

б, ррт

Fig. S14 Variable Temperature (233-313 K) ¹H NMR spectrum (400 MHz, CDCl₃) of $[Co(L^1)_2][PF_6] \cdot 2CH_2Cl_2 2$.

Fig. S15 ¹³C NMR spectrum (400 MHz, CDCl₃) of $[Co(L^1)_2][PF_6]$ ·2CH₂Cl₂ **2** at 298 K. Peak denoted by * is due to CHCl₃.

Fig. S16 2D HMQC (Heteronuclear Multiple Quantum Coherence) of (400 MHz, CDCl₃) $[Co(L^1)_2][PF_6]$ ·2CH₂Cl₂ 2.

б, ррт

Fig. S17 ¹H NMR spectrum (400 MHz, CDCl₃) of $[Co^{III}(\eta^5-C_5H_5)_2][Co(L^1)_2]$ **3** 298 K. Peaks denoted by * and ** are due to CHCl₃ and CH₂Cl₂, respectively

δ, ppm

Fig. S18 Variable Temperature (233-313 K) ¹H NMR spectrum (400 MHz, CDCl₃) of $[Co^{III}(\eta^{5}-C_{5}H_{5})_{2}][Co(L^{1})_{2}]$ **3**.

б, ррт

Fig. S19 ¹³C NMR spectrum (400 MHz, CDCl₃) of $[Co^{III}(\eta^5-C_5H_5)_2][Co(L^1)_2]$ **3** 298 K. Peaks denoted by * and x are due to CHCl₃ and CH₂Cl₂.

Fig. S20. Optimized-structure for $[1]^{1-}$, where no spin-population is found.

Fig. S21 X-band EPR spectra recorded for $[Co^{III}(\eta^5-C_5H_5)_2][Co(L^1)_2]$ MeCN 3 as solid (298 K); $g_{iso} = 2.0053$.

(*b*)

S19

Fig. S22. UV-VIS-NIR spectra of (a) $[Co(L^1)_2]$ **1**, (b) $[Co(L^1)_2][PF_6]$ ·2CH₂Cl₂ **2** and (c) $[Co^{III}(\eta^5-C_5H_5)_2][Co(L^1)_2]$ ·MeCN **3** in CH₂Cl₂.

Fig. S23 Absorption spectral measurements on ligand in neutral, dianionic and radical-anion forms recorded in CH_2Cl_2 .

Fig. S24 TD-DFT-Calculated electronic spectra of (a) 1, (b) $[1]^{1+}$, and (c) $[1]^{1-}$.

LUMO+2(α)

LUMO+3(α)

HOMO-10(β)

Fig. S25 Representative molecular-orbitals involved in TD-DFT transitions of 1.

ΗΟΜΟ-3(α)

HOMO-1(a)

ΗΟΜΟ(α)

LUMO(a)

LUMO+1(a)

LUMO+2(a)

HOMO-3(β)

HOMO-1(β)

HOMO(β)

LUMO(β)

LUMO+1(β)

Fig. S27 Representative molecular-orbitals involved in TD-DFT transitions of $[1]^{1-}$.

Table S1. Data collection and structure refinement parameters for $[Co(L^1)_2]$ **1**, $[Co(L^1)_2][PF_6]$ ·2CH₂Cl₂ **2** and $[Co^{III}(\eta^5-C_5H_5)_2][Co(L^1)_2]$ ·MeCN **3**.

	1	2	3
Empirical formula	C ₅₂ H ₅₈ CoN ₆ O ₂	$C_{54}H_{62}Cl_4CoF_6N_6O_2P$	$C_{64}H_{71}Co_2N_7O_2$
Formula weight	857.97	1172.80	1088.13
Crystal color, habit	black, prism	black, block	black, block
Temperature (K)	100(2)	100(2)	100(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Trigonal	Orthorhombic
Space group	Pca2 ₁	R3c	P na 2_1
Crystal size (mm ³)	0.10 x 0.08 x 0.06	0.18 x 0.14 x 0.10	0.1 x 0.07 x 0.05
<i>a</i> (Å)	22.556(5)	31.315(5)	22.6297(14)
<i>b</i> (Å)	12.003(2)	31.315(5)	14.1505(9)
<i>c</i> (Å)	16.456(3)	29.732(5)	17.5120(11)
α(°)	90.0	90.0	90.0
β(°)	90.0	90.0	90.0
γ(°)	90.0	120.0	90.0
Volume (Å ³)	4455.1(16)	25250(7)	5607.7(6)
Ζ	4	18	4
Density _{calc} (g cm ⁻³)	1.28	1.39	1.289
μ (mm ⁻¹)	0.433	0.395	0.642
no. reflens colled	22478	53813	28318
no. unique reflcns	$6811(R_{\rm int} = 0.0823)$	$6646 (R_{int} = 0.1120)$	$8128(R_{\rm int} = 0.0706)$
no. reflens used $[I > 2\sigma(I)]$	5683	4223	6689
Goodness-of-fit on F^2	1.021	1.0419	1.011
Final <i>R</i> indices $[I > 2\sigma(I)]^{a,b}$	0.0491 (0.1056)	0.0786 (0.1985)	0.0484(0.1049)
<i>R</i> indices (all data) ^{a,b}	0.0619 (0.1143)	0.1038 (0.2197)	0.0636(0.1125)

$${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. \ {}^{b}wR_{2} = \{\Sigma [w (|F_{o}|^{2} - |F_{c}|^{2})^{2}] / \Sigma [w (|F_{o}|^{2})^{2}] \}^{1/2}.$$

Table S2. Comparison of X-ray determined experimental bond lengths with the calculated bondlengthsfrommetricaloxidation $[Fe(L^1)_2]^+$.

	$[Fe(L^1)_2]$	$[Fe(L^1)_2]^{1+}$
C1 –O1	1.307(6) [1.312]	1.302(9) [1.291]
C1–C2	1.439(7) [1.421]	1.439(10) [1.431]
С2–С7	1.381(8) [1.382]	1.338(8) [1.373]
С7–С8	1.419(9) [1.421]	1.447(10) [1.434]
C8–C13	1.383(7) [1.375]	1.377(10) [1.367]
C13–C14	1.404(7) [1.408]	1.394(10) [1.415]
C1–C14	1.430(7) [1.435]	1.441(10) [1.452]
C14–N1	1.364(6) [1.358]	1.368(9) [1.341]
С27–О2	1.315(6) [1.334]	1.278(9) [1.295]
C27–C28	1.440(7) [1.412]	1.453(10) [1.429]
C28–C33	1.387(7) [1.391]	1.368(11) [1.375]
C33–C34	1.401(8) [1.408]	1.412(10) [1.432]

C34–C39	1.404(7) [1.383]	1.360(10) [1.368]
C39–C40	1.397(7) [1.401]	1.414(10) [1.414]
C27–C40	1.426(7) [1.422]	1.436(10) [1.448]
N1-C40	1.402(6) [1.376]	1.366(9) [1.344]

 Table S3. DFT-optimized coordinates for 1.

С	-1.121540000	2.212832000	-3.764957000
С	-1.845021000	4.489833000	-3.059007000
С	-3.755984000	-1.855935000	-2.969552000
С	-4.219256000	-3.168213000	-2.837037000
С	5.641459000	2.599998000	-2.022656000
С	3.995157000	-3.805024000	-2.310469000
С	-1.166104000	3.195770000	-2.570441000
С	2.619729000	-3.777806000	-2.365033000
С	-2.491157000	-1.497948000	-2.495308000
С	-3.403954000	-4.132080000	-2.23500000
С	0.274867000	3.550803000	-2.134405000
С	4.665727000	-2.751082000	-1.646129000
С	-1.683164000	-2.464959000	-1.889143000
С	-2.135598000	-3.785960000	-1.767318000

С	1.865707000	-2.730615000	-1.764384000
С	-1.926828000	2.555707000	-1.391409000
С	4.496619000	4.692837000	-1.281154000
С	5.004625000	3.308488000	-0.813750000
С	3.972745000	-1.697064000	-1.086911000
С	2.543967000	-1.625875000	-1.122832000
С	-3.024552000	3.169300000	-0.795506000
С	-1.505165000	1.303892000	-0.832036000
С	3.412707000	1.286022000	-0.740240000
С	-5.982940000	3.706083000	-0.142927000
С	6.099435000	3.501083000	0.262069000
С	3.832616000	2.504491000	-0.218549000
С	2.313028000	0.606855000	-0.176296000
С	-3.744962000	2.635750000	0.307627000
С	-2.295033000	0.686978000	0.197247000
С	-4.893241000	3.456055000	0.926407000
С	-3.371718000	1.383982000	0.783704000
С	3.135246000	3.020892000	0.907235000
С	-4.040149000	-1.587077000	1.019764000
C	1.548301000	1.212535000	0.878138000
C	-2.609958000	-1.569232000	1.060099000
С	-5.548124000	2.733873000	2.117424000
C	-4.772482000	-2.633899000	1.541371000
С	2.017491000	2.425272000	1.483971000
C	1.987583000	-3.925273000	1.602438000
C	-4.348591000	4.813845000	1.429191000
С	-1.973977000	-2.720065000	1.662391000
С	1.582735000	-2.596432000	1.787832000
C	3.241924000	-4.338692000	2.052888000
C	-4.142313000	-3.733545000	2.170008000
С	-0.142857000	3.471766000	2.279865000
С	-2.766838000	-3.758690000	2.226481000
C	2.423651000	-1.688936000	2.439267000
С	1.285757000	3.045554000	2.691790000
С	4.090106000	-3.434696000	2.700724000
С	3.674226000	-2.114361000	2.895557000
С	2.014956000	4.292774000	3.228025000
С	1.209131000	2.017222000	3.845641000
Н	-0.592235000	2.674293000	-4.614982000
Н	-2.139912000	1.959490000	-4.103211000
Н	-1.281764000	4.896504000	-3.913545000
Н	-0.598044000	1.284236000	-3.502693000
Н	-2.878712000	4.314304000	-3.397423000
Н	-4.379154000	-1.100235000	-3.454353000
Н	4.920748000	2.458340000	-2.842991000
Н	-5.211104000	-3.440964000	-3.206049000
Н	4.557445000	-4.623168000	-2.764615000
Н	2.051841000	-4.562977000	-2.867568000
Н	0.829021000	3.989659000	-2.981349000
Н	6.473418000	3.205926000	-2.414835000
Н	6.050717000	1.613635000	-1.753124000
Н	-2.116652000	-0.484143000	-2.618478000

Н	-1.864991000	5.269484000	-2.281468000
Н	-3.756304000	-5.161006000	-2.127452000
Н	5.322985000	5.281924000	-1.712792000
Н	5.755398000	-2.773396000	-1.557438000
Н	0.822614000	2.665960000	-1.786092000
Н	3.714776000	4.586127000	-2.049694000
Н	-1.490221000	-4.531516000	-1.300305000
Н	3.901678000	0.855142000	-1.610074000
Н	0.264288000	4.291093000	-1.318621000
Н	-6.402131000	2.754897000	-0.508266000
Н	-3.340678000	4.137041000	-1.180813000
Н	-5.589553000	4.254207000	-1.012426000
Н	6.489134000	2.529752000	0.606317000
Н	6.943458000	4.081438000	-0.146292000
Н	4.519616000	-0.926506000	-0.547884000
Н	4.070680000	5.276619000	-0.451032000
Н	-6.808848000	4.302132000	0.279719000
Н	-4.556972000	-0.778622000	0.507209000
Н	5.721766000	4.041475000	1.143302000
Н	-5.986980000	1.767681000	1.822813000
Н	1.316787000	-4.623642000	1.099658000
Н	3.487081000	3.961308000	1.327549000
Н	-3.908409000	5.408514000	0.614378000
Н	-3.879907000	0.938324000	1.634901000
Н	-5.862017000	-2.613450000	1.450640000
Н	-0.108821000	4.239987000	1.491015000
Н	-6.361163000	3.352986000	2.528266000
Н	3.557469000	-5.373206000	1.896036000
Н	-5.159327000	5.412572000	1.876862000
Н	-0.727044000	2.622009000	1.904776000
Н	-4.829611000	2.549140000	2.931128000
Н	2.059639000	5.102797000	2.483193000
Н	-3.569562000	4.666954000	2.193896000
Н	-4.734984000	-4.545623000	2.595486000
Н	-2.229128000	-4.581070000	2.701985000
Н	2.085467000	-0.669223000	2.609901000
Н	5.070855000	-3.760264000	3.056350000
Н	-0.673940000	3.900712000	3.146360000
Н	3.043315000	4.065745000	3.551734000
Н	4.323425000	-1.405486000	3.415650000
Н	0.649029000	1.120899000	3.548513000
Н	1.472106000	4.684592000	4.102507000
Н	2.218358000	1.711221000	4.167097000
Н	0.701349000	2.463228000	4.716735000
N	0.520691000	-2.856513000	-1.962309000
N	-0.356145000	-2.122631000	-1.420608000
N	1.825808000	-0.634693000	-0.557614000
N	-1.854540000	-0.584876000	0.532019000
N	0.269007000	-2.186080000	1.335678000
N	-0.634497000	-2,903786000	1,854116000
0	-0.437574000	0.661707000	-1,236977000
0	0.457244000	0.595833000	1,25970000
~	0.10,211000	0.00000000	

Table S4. DFT-optimized coordinates for $[1]^{1+}$.

С	-0.345095000	0.129397000	0.171504000
С	-0.213429000	0.103497000	2.661692000
С	0.629594000	0.094459000	1.363421000
С	3.775277000	-5.220068000	0.996926000
С	1.442392000	-1.219107000	1.274837000
С	1.024661000	4.890962000	-1.115139000
С	1.590717000	2.239573000	0.332354000
С	1.584448000	1.304358000	1.351241000
С	4.605684000	-5.047990000	2.291820000
С	3.835171000	-5.704989000	3.450360000
С	5.964113000	-5.773703000	2.135950000
С	0.625387000	4.241691000	5.396357000
С	2.433795000	4.261770000	-0.991717000
С	2.729465000	3.405511000	-2.246829000
С	2.477324000	3.366908000	0.257041000
С	1.340619000	3.051085000	5.241190000
С	2.546043000	1.508438000	2.404906000
С	0.988221000	5.163529000	6.383761000
С	4.859174000	-3.552025000	2.538164000
С	4.447096000	-2.900695000	3.686734000
С	5.547681000	-2.792047000	1.532906000
С	3.469224000	5.398286000	-0.927922000
С	3.338607000	3.596659000	1.314650000
С	2.418104000	2.787894000	6.091278000
С	3.356183000	2.715440000	2.424005000
С	5.489282000	0.343823000	-0.196958000
С	2.065027000	4.887460000	7.231776000
С	4.682275000	-1.512161000	3.842431000
С	5.765013000	-1.427302000	1.583453000
С	6.983506000	-1.603953000	-0.648818000
С	5.259932000	-0.747386000	2.749428000
С	2.778828000	3.695215000	7.093671000
С	3.567311000	-0.413110000	7.193032000
С	4.250702000	-1.213429000	6.213937000
С	3.381378000	-0.902076000	8.509642000
C	6.474813000	-0.655882000	0.453546000
C	4.800796000	-2.440781000	6.667052000
C	3.904972000	-2.118800000	8.907650000
C	4.637157000	-2.875401000	7.974696000
С	4.084795000	5.292410000	3.721229000
C	4,605152000	4.014115000	4.052605000
C	4.624481000	6.458135000	4.245885000
C	7.696898000	0.105783000	1.021513000
C	5.68030000	3,983080000	5,006101000
~	5.0000000	5.505000000	5.000101000

С	5.722787000	6.421798000	5.124195000
С	6.811474000	0.742854000	6.006091000
С	7.560036000	-0.163556000	5.250150000
С	6.235759000	5.191704000	5.493803000
С	6.942516000	0.795339000	7.398345000
С	8.442162000	-1.029200000	5.902578000
С	7.817890000	-0.082483000	8.040879000
С	8.568864000	-0.996155000	7.295089000
Н	-1.021390000	-0.736884000	0.228281000
Н	-0.972123000	1.034897000	0.173210000
Н	-0.916335000	-0.744584000	2.656935000
Н	0.176588000	0.070700000	-0.796471000
Н	-0.809753000	1.027202000	2.738370000
Н	3.584630000	-6.288770000	0.809776000
Н	0.757068000	-2.082107000	1.273610000
Н	2.802011000	-4.711085000	1.079487000
Н	0.234244000	4.131261000	-1.211785000
Н	4.292628000	-4.818727000	0.112457000
Н	0.414091000	0.014227000	3.558395000
Н	0.894749000	2.102137000	-0.492718000
Н	0.789598000	5.513444000	-0.237252000
Н	2.029283000	-1.255409000	0.343260000
Н	0.974882000	5.532849000	-2.009015000
Н	5.799382000	-6.847082000	1.951203000
Н	2.130540000	-1.332595000	2.122415000
Н	-0.231222000	4.441737000	4.748340000
Н	3.673254000	-6.771105000	3.230933000
Н	2.844987000	-5.246872000	3.599469000
Н	1.994228000	2.598564000	-2.385333000
Η	1.044166000	2.316894000	4.493866000
Н	0.424367000	6.091987000	6.499621000
Н	2.699472000	4.036048000	-3.149563000
Н	6.553568000	-5.381750000	1.293349000
H	6.573269000	-5.676254000	3.048541000
H	4.389844000	-5.648441000	4.400222000
H	3.905227000	-3.433603000	4.462877000
H	4.627450000	-0.184200000	-0.634893000
H	5.895121000	-3.333388000	0.655398000
H	6.163304000	-2.145/02000	-1.145144000
H	3.293423000	6.070806000	-0.0/3659000
H	3.728493000	2.945//4000	-2.186618000
H	3.406/3/000	6.009135000	-1.841125000
H	5.995077000	0.892682000	-1.007821000
H	5.113334000	I.077840000	0.527279000
H	4.499048000	5.014211000	-0.860215000
H	2.34/440000	5.598531000	8.011525000
п u	4.USOLOUUUU 2 817046000	4.42/JIIUUU	1 0 0 2 2 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
п ц	2.01/040000 7 703606000	-0.2/04/9000 -2 3/2766000	-0 26320000
ц	3 208280000	2.342/00000 5 35/032000	3 070670000
ц Ц	7 499262000	-1 016596000	-1 423281000
ц	5 108166000	-3 030364000	5 QQQQ11000
τı	J. 100400000	5.050204000	J. JOJOTT000

Н	3.764359000	-2.478079000	9.928510000
Н	5.096476000	-3.818806000	8.280191000
Н	3.612197000	3.464008000	7.759597000
Н	4.176234000	7.417374000	3.975211000
Н	7.401580000	0.854510000	1.768528000
Н	8.222015000	0.630607000	0.207674000
Н	8.415611000	-0.589897000	1.484436000
Н	7.481043000	-0.165001000	4.164124000
Н	6.362233000	1.521875000	7.970088000
H	6.152951000	7.344872000	5.516507000
Н	9.045442000	-1.724549000	5.314124000
H	7.078667000	5.108277000	6.181785000
H	7.919095000	-0.044804000	9.127953000
Н	9.261352000	-1.675097000	7.797976000
N	2.997503000	0.825452000	7.002079000
N	3.150503000	1.535380000	5.979810000
N	4.400471000	-0.745975000	4.938078000
N	4.093366000	2.843516000	3.567119000
N	5.921112000	1.687784000	5.348791000
N	6.313203000	2.868439000	5.507551000
0	2.708520000	0.677153000	3.385278000
0	5.324488000	0.537577000	2.902202000
Со	4.280202000	1.115898000	4.421215000

Table S5. DFT-optimized coordinates for $[1]^{1-}$.

Со	16.703954000	7.828361000	10.382383000
0	15.321237000	8.089870000	9.067748000
0	15.387158000	8.208981000	11.733869000
Ν	18.156827000	7.752652000	11.747968000
Ν	16.120181000	5.992852000	10.607910000
Ν	17.005392000	9.730887000	10.157041000
Ν	18.003375000	7.248078000	8.983920000
С	14.982857000	9.364359000	8.992279000
С	14.507023000	7.227271000	11.819545000
Ν	19.136026000	8.567194000	11.823247000
С	18.316166000	6.678714000	12.695292000
С	16.883768000	4.916592000	10.414833000
С	14.832509000	5.993983000	11.176462000
С	15.844838000	10.313663000	9.614175000
С	18.177040000	10.344732000	10.325115000
Ν	18.510835000	6.081853000	8.891556000
С	18.605668000	8.141235000	8.026508000
С	13.819103000	9.825436000	8.306326000
С	13.279445000	7.335468000	12.532763000
С	19.226890000	9.722465000	11.120121000
С	17.270325000	6.340923000	13.563140000
С	19.538605000	5.993833000	12.783273000
С	18.086538000	5.004758000	9.598301000

С	16.633835000	3.629307000	11.014239000
C	13 884441000	4.967966000	11.092711000
C	15,469638000	11.663022000	9.710536000
C	18 523250000	11 605993000	9 717689000
C	17 802098000	8 906963000	7 172876000
C	20 003058000	8 214658000	7 9152/3000
C	12 016441000	0.214050000	7.913243000
C	12.910441000	11 102027000	7.337337000
C	13.5246/9000	11.192937000	8.384667000
C	12.942340000	8.615913000	13.3266/9000
C	12.388312000	6.250662000	12.462607000
С	20.470325000	10.399633000	11.311693000
Η	16.334329000	6.891493000	13.506957000
С	17.449626000	5.324940000	14.505715000
С	19.707157000	4.976347000	13.722657000
Н	20.347007000	6.266238000	12.103522000
С	18.887987000	3.842115000	9.383101000
Н	15.796711000	3.537485000	11.702734000
С	17.461267000	2.550307000	10.812332000
Н	14.117189000	4.085954000	10.495778000
С	12.640745000	5.075966000	11.733408000
C	14.300502000	12,128261000	9.098934000
с н	16 094110000	12 335100000	10 294671000
н Ц	17 804921000	12.064065000	9 041367000
C C	10 751650000	12 196175000	9.041307000
	16 720104000	2.1901/5000	9.095770000
H C	10.720194000	0.82/990000	7.249271000
C	18.395959000	9.737933000	6.219096000
Н	20.619000000	7.613923000	8.585/1/000
С	20.587978000	9.053103000	6.966023000
С	12.298902000	7.814134000	8.518699000
С	11.760377000	9.550314000	6.809770000
С	13.747382000	8.088046000	6.468480000
Н	12.626467000	11.553283000	7.883577000
С	12.836858000	9.822279000	12.364586000
С	11.605037000	8.497285000	14.083279000
С	14.047384000	8.889884000	14.374451000
Н	11.440241000	6.339304000	12.986811000
С	20.747444000	11.608252000	10.722127000
Н	21.197055000	9.896745000	11.953464000
С	18.663395000	4.636699000	14.590209000
H	16.628193000	5,075619000	15,182931000
ч	20 659623000	4 441090000	13 772866000
и П	19 752068000	3 969384000	8 727317000
п С	19.752000000	2 622220000	0.727317000
	17 240720000	2.033329000	9.900021000
н	17.240728000	1.612495000	11.331926000
C	11.614227000	3.930667000	11.603985000
C	13.841088000	13.598790000	9.184617000
Н	19.968382000	13.131957000	9.370927000
C	19.787311000	9.818483000	6.111286000
H	17.758043000	10.324484000	5.552337000
Н	21.677901000	9.112867000	6.897885000
Н	11.663932000	8.321784000	9.262333000
H	13.076815000	7.259786000	9.059032000

Н	11.668864000	7.090512000	7.971876000
Н	12.123160000	10.291816000	6.079320000
Н	11.082989000	10.064420000	7.510178000
Н	11.160277000	8.807429000	6.259139000
Н	14.570583000	7.528295000	6.931785000
Н	14.171837000	8.794535000	5.735292000
Н	13.110132000	7.373764000	5.918691000
Н	12.020210000	9.672848000	11.640141000
Н	13.768085000	9.965547000	11.801764000
Н	12.623412000	10.746396000	12.930627000
Н	11.607448000	7.661525000	14.801919000
Н	10.751889000	8.357858000	13.400366000
Н	11.421850000	9.423933000	14.651918000
Н	15.023343000	9.023960000	13.889508000
Н	14.122858000	8.054730000	15.091068000
Н	13.816410000	9.805633000	14.946185000
Н	21.710289000	12.101790000	10.872731000
Н	18.795677000	3.838461000	15.325853000
Н	19.235601000	1.760216000	9.799413000
С	10.324051000	4.207360000	12.397449000
С	12.224016000	2.612666000	12.136448000
С	11.228717000	3.743959000	10.117615000
С	12.446215000	13.676270000	9.848298000
С	13.761048000	14.206364000	7.764450000
С	14.807217000	14.463131000	10.015304000
Н	20.246405000	10.475803000	5.367665000
Н	10.523624000	4.326972000	13.474041000
Н	9.621887000	3.365170000	12.279896000
Н	9.814702000	5.117172000	12.043875000
Н	11.505600000	1.779199000	12.042334000
Н	12.498251000	2.709557000	13.199471000
Н	13.133136000	2.331806000	11.583139000
Н	10.502249000	2.920621000	9.998276000
Н	12.107120000	3.509119000	9.497489000
Н	10.776919000	4.663592000	9.713254000
Н	12.099428000	14.722775000	9.915433000
Н	12.475284000	13.257180000	10.866566000
Н	11.693359000	13.109736000	9.279442000
Н	14.746285000	14.179297000	7.271626000
Н	13.425524000	15.257861000	7.803876000
Н	13.055549000	13.654119000	7.124910000
Н	15.820300000	14.477145000	9.583691000
Н	14.887022000	14.103271000	11.052798000
Н	14.446014000	15.504468000	10.050583000

	1	[1] ¹⁺	[1] ^{1–}
Co-O1	1.911(3) [1.929]	1.926(5) [1.933]	1.922(4) [1.925]
Co-N1	1.887(4) [1.926]	1.886(5) [1.936]	1.894(5) [1.939]
Co-N3	1.920(4) [1.978]	1.927(5) [1.967]	1.930(5) [1.995]
O1–C1	1.327(6) [1.310]	1.286(7) [1.296]	1.343(6) [1.321]
C1–C2	1.423(7) [1.435]	1.427(9) [1.441]	1.405(8) [1.424]
C2–C7	1.381(7) [1.391]	1.385(9) [1.383]	1.395(8) [1.406]
С7–С8	1.401(7) [1.421]	1.403(9) [1.436]	1.390(8) [1.405]
C8–C13	1.389(7) [1.390]	1.381(9) [1.383]	1.373(8) [1.403]
C13–C14	1.397(7) [1.410]	1.404(9) [1.417]	1.389(8) [1.399]
C1–C14	1.416(7) [1.436]	1.422(9) [1.454]	1.402(8) [1.428]
N1-C14	1.403(6) [1.387]	1.402(8) [1.366]	1.416(7) [1.408]
N1C15	1.345(7) [1.348]	1.349(8) [1.367]	1.336(7) [1.333]
Co–O2	1.908(3) [1.929]	1.922(2) [1.932]	1.921(4) [1.926]
Co–N4	1.891(4) [1.926]	1.873(5) [1.936]	1.888(4) [1.939]
Co-N6	1.918(4) [1.978]	1.946(5) [1.970]	1.930(5) [1.995]
O2–C27	1.316(6) [1.310]	1.301(4) [1.296]	1.337(6) [1.321]
C27–C28	1.434(7) [1.434]	1.429(10) [1.441]	1.408(7) [1.427]
C28–C33	1.387(7) [1.392]	1.355(10) [1.382]	1.390(8) [1.401]
C33–C34	1.410(9) [1.421]	1.438(4) [1.436]	1.399(8) [1.409]
C34–C39	1.374(8) [1.390]	1.367(4) [1.383]	1.386(8) [1.399]
C39–C40	1.405(7) [1.410]	1.407(4) [1.417]	1.391(7) [1.404]

 Table S6. X-Ray structural and DFT-optimized (B3LYP) (in parentheses) selected bond lengths of

 [1], [1]¹⁺ and [1]¹⁻.

C27–C40	1.416(7) [1.437]	1.421(4) [1.454]	1.404(8) [1.425]
N4-C40	1.386(6) [1.387]	1.373(8) [1367]	1.416(7) [1.408]
N4-C41	1.362(6) [1.348]	1.380(8) [1.367]	1.331(7) [1.333]

Table S7. TD-DFT-ca	lculated el	lectronic trai	nsitions of	f 1.
---------------------	-------------	----------------	-------------	------

Excitation	λ	f	Transition	Character
energy	(nm)	5		
(eV)	(IIII)			
$\frac{(01)}{1.1160}$	1111	0.0388	<i>β</i> _H_1[~94%]]→	Inter-ligand charge-transfer (CT) from
1.1100	1111	0.0500	$\beta \prod \left[\frac{1}{2} \frac{1}{$	amido phonoloto mojoty to phonyl
			p-L[~90%L](90%)	
				iminosemiquinonate molety
1.2742	973	0.008	β–H [~99%L]→	CT from amido-phenolate and
			β–L + 1 [~96%L]	phenyl-iminosemiquinonate to azo
			(10%)	
			$\beta\!\!-\!\!\mathrm{H}\!-\!2\;[\sim\!99\%\mathrm{L}]\!\!\rightarrow$	Inter-ligand CT from amido-phenolate
			β–L [~96%L] (56%)	moiety to phenyl-iminosemiquinonate
				moiety
1.5550	797	0.0106	α–H [~96%L]→	CT from amido-phenolate and phenyl-
			α–L+3 [~38%M]	iminosemiquinonate to Co and azo
			(29%)	CT from amido-phenolate and phenyl-
			$\beta\!\!-\!\!\mathrm{H}\left[\sim\!99\%\mathrm{L}\right]\!\!\rightarrow$	iminosemiquinonate to azo
			β–L+2 [~99%L]	
			(14%)	
1.7664	702	0.0372	α–H [~96%L]→	CT from amido-phenolate and phenyl-
			α–L [~96%L] (39%)	iminosemiquinonate to azo
			β–H [~99%L]→	CT from amido-phenolate and phenyl-
			β–L + 2 [~99%L]	iminosemiquinonate to azo
			(22%)	
1.7742	699	0.0401	α–H [~96%L]→	CT from amido-phenolate and phenyl-
			α–L+1 [~99%L]	iminosemiquinonate to azo
			(61%)	

			<i>β</i> −H [~99%L]→	CT from amido-phenolate and phenyl-
			β–L + 1 [~96%L]	iminosemiquinonate to azo
			(29%)	
1 9060	651	0.018	<i>α</i> -H - 1 [~99%]]→	CT from amido-phenolate and phenyl-
1.9000	0.01	0.010	$\alpha = I \left[-96\% I \right] (72\%)$	iminosemiquinonate to azo
			u E['90/0E](/2/0)	mmosennqumonate to azo
			β–H [~99%L]→	CT from amido-phenolate and phenyl-
			<i>β</i> –L + 1 [~96%L]	iminosemiquinonate to azo
			(12%)	
1.9608	632	0.0383	α–H –1 [~99%L]→	CT from amido-phenolate and phenyl-
			α−L+1 [~99%L]	iminosemiquinonate to azo
			(37%)	
			$\beta\!\!-\!\!\mathrm{H} \left[\sim\!99\%\mathrm{L}\right]\!\!\rightarrow$	CT from amido-phenolate and phenyl-
			β –L + 2 [~99%L]	iminosemiquinonate to azo
			(16%)	
2.0744	598	0.036	$\beta -H - 3 \ [{\sim}99\% L] \rightarrow$	CT from amino-azo-phenyl moiety to
			β–L [~96%L] (68%)	phenyl-iminosemiquinonate
2.2678	547	0.0374	α–H – 1 [~99%L]→	CT from amido-phenolate and phenyl-
			α–L+2 [~42%M]	iminosemiquinonate to Co and azo
			(78%)	
2.4577	505	0.0287	$\beta\!\!-\!\!\mathrm{H}\!-\!6\;[\sim\!\!95\%\mathrm{L}]\!\!\rightarrow$	CT from amino-azo-phenyl moiety to
			β–L [~96%L] (30%)	phenyl-iminosemiquinonate
			β -H - 7 [~93%L] \rightarrow	CT from phenyl appended to azo to
			β–L [~96%L] (37%)	phenyl-iminosemiquinonate
2 7000	1/12	0.0322	$a_{H} = 2 \left[-0.0/0/1 \right] \rightarrow$	CT from amido_nhenolate and nhenvel
4.1777	443	0.0322	$\alpha - 11 - 2 [\sim 74 / 0L] \rightarrow$	iminosomiquinonato to ano
			u-L + Ι [~9970L]	mmosennqumonate to azo
			(34%)	

			β -H – 10 [~93%L] \rightarrow β -L [~96%L] (21%)	CT from phenyl azo to phenyl- iminosemiquinonate
2.8887	429	0.0326	α-H − 3 [~99%L]→ α-L [~96%L] (49%)	CT from amido-phenolate and phenyl- iminosemiquinonate to azo

Excitation	λ	f	Transition	Character
energy	(nm)			
(eV)				
0.9366	1324	0.0237	<i>α</i> −H [~98%L]→	Inter-ligand CT involving phenyl-
			α–L [~98%L] (51%)	iminosemiquinonate part of one ligand
				to other ligand
			β–H [~98%L]→	Inter-ligand CT involving phenyl-
			$\beta = \prod_{k=0}^{n} [\sim 98\%] (47\%)$	iminosemiquinonate part one ligand to
				other ligand
1.1962	1037	0.0213	α–H − 1 [~96%L]→	Intra-ligand CT involving phenyl-
			α–L [~98%L] (48%)	iminosemiquinonate
			β–H − 1 [~96%L]→	Intra-ligand CT involving phenyl-
			β–L [~98%L] (48%)	iminosemiquinonate
1.2324	1006	0.0711	$\alpha -H - 1[\sim 96\% L] \rightarrow$	Intra-ligand CT involving phenyl-
			α–L [~98%L] (46%)	iminosemiquinonate
			β–H – 1 [~96%L]→	Intra-ligand CT involving phenyl-
			β–L [~98%L] (46%)	iminosemiquinonate
1.7109	725	0.0486	α–H [~98%L]→	Intra-ligand CT from phenyl-
			α–L + 1 [~96%L]	iminosemiquinonate to o-amino-azo
			(42%)	part of the ligand
			<i>β</i> –H [~98%L]→	Intra-ligand CT from phenyl-
			β–L + 1 [~96%L] ⁴³	iminosemiquinonate to o-amino-azo
			(39%)	part of the ligand

1.7548	707	0.0204	α–H [~98%L]→	Intra-ligand CT from phenyl-
			α -L + 1 [~96%L]	iminosemiquinonate to o-amino-azo
			(29%)	part of the ligand
			$\beta\!\!-\!\!\mathrm{H} \left[\sim\!\!98\%\mathrm{L}\right]\!\!\rightarrow$	Intra-ligand CT from phenyl-
			β–L + 1 [~96%L]	iminosemiquinonate to o-amino-azo
			(33%)	part of the ligand
2.1466	578	0.0216	$\alpha\text{-H}-3\;[{\sim}99\%\text{L}]{\rightarrow}$	CT from azo appended phenyl ring to
			α–L [~98%L] (15%)	phenyl-iminosemiquinonate
				CT from azo appended phenyl ring to
			$\beta\!\!-\!\!\mathrm{H}\!-\!3\;[\sim\!\!99\%\mathrm{L}]\!\!\rightarrow$	phenyl-iminosemiquinonate
			β–L [~98%L] (19%)	
				LMCT involving phenyl-
				iminosemiquinonate to Co and CT
			α–H [~98%L]→	from phenyl-iminosemiquinonate to
			α–L+4 [~40%M]	azo
			(12%)	LMCT from phenyl-iminosemi-
				quinonate to Co and CT from phenyl-
			β–H [~98%L]→	iminosemiquinonate to azo
			β–L+4 [~60%L]	
			(12%)	
2.1993	564	0.0466	<i>α</i> −H [~98%L]→	CT from iminosemiquinonate of one
			α–L+2 [~98%L]	ligand to azo in other ligand
			(13%)	
			β–H [~98%L]→	CT from iminosemiquinonate of one
			β–L + 2 [~98%L]	ligand to azo- in other ligand
			(13%)	
			α–H – 3 [~99%L]→	CT from azo-appended phenyl ring to

			α-L [~98%L] (14%)	phenyl-iminosemiquinonate
			β–H – 3 [~99%L]→	CT from azo appended phenyl ring to
			β–L [~98%L] (13%)	phenyl-iminosemiquinonate
2.2401	554	0.0482	<i>α</i> −H [~98%L]→	CT from iminosemiquinonate of one
			α–L+2 [~98%L]	ligand to azo in other ligand
			(31%)	
			β–H [~98%L]→	CT from iminosemiquinonate of one
			β–L+2 [~98%L]	ligand to azo- in other ligand
			(32%)	
2 4075	515	0.0597	$q-H = 5 [\sim 99\%] \rightarrow$	Intraligand CT in iminosemiquinonate
2.1075	010	0.0097	a I [, 08%]] (12%)	part of ligand and interligand charge
			α-L [~98/0L] (12/0)	transfor from and meringand charge-
				transfer from azo appended phenyl to
				iminosemiquinonate
			$\beta\!\!-\!\!\mathrm{H}-5\;[\sim\!99\%\mathrm{L}]\!\!\rightarrow$	Intraligand CT in iminosemiquinonate
			β–L [~98%L] (31%)	part of ligand and interligand CT from
				azo appended phenyl to
				iminosemiquinonate
				minosemiquinonate
			<i>α</i> −H − 7 [~99%L]→	Intraligand CT in phenyl-
			$\alpha = [.[~98\%1](7\%)]$	iminosemiquinonate part of ligand and
			α <u>Γ</u> γονο <u>Γ</u>](γγο)	interligand charge transfer from are
				interingand enarge-transfer from azo
				appended pnenyl to
				iminosemiquinonate
			$\beta\!\!-\!\!\mathrm{H}-7\;[\sim\!\!99\%\mathrm{L}]\!\!\rightarrow$	Intraligand CT in phenyl-

			β–L [~98%L] (19%)	iminosemiquinonate part of ligand and
				interligand CT from azo appended
				phenyl to iminosemiquinonate
2.8645	433	0.0793	α–H−8 [~92%L]→	CT from azo-phenyl to phenyl-
			α–L [~98%L] (11%)	iminosemiquinonate
			$\beta\!\!-\!\!\mathrm{H}-8\;[\sim\!\!92\%\mathrm{L}]\!\!\rightarrow$	CT from azo-phenyl to phenyl-
			β–L [~98%L] (10%)	iminosemiquinonate
			α–H – 1 [~96%L]→	Intra-ligand CT from phenyl-
			<i>α</i> −L + 2 [~98%L]	iminosemiquinonate to o-amino-azo
			(9%)	part of the ligand
			β–H − 1 [~96%L]→	Intra-ligand CT from phenyl-
			<i>β</i> –L + 2 [~98%L]	iminosemiquinonate to o-amino-azo
			(7%)	part of the ligand

Excitation	λ	F	Transition	Character
energy	(nm)			
(eV)				
1.6513	751	0.0391	<i>α</i> −H [~96%L]→	Intra and inter-ligand CT involving
			α–L [~99%L] (16%)	amido-phenolate moiety to azo
			<i>α</i> −H [~96%L]→	Intra and inter-ligand CT involving
			α–L+1 [~97%L]	amido-phenolate moiety to azo
			(27%)	
			β–H [~96%L]→	Intra and inter-ligand CT involving
			β–L [~99%L] (16%)	amido-phenolate moiety to azo
			β–H [~96%L]→	Intra and inter-ligand CT involving
			β–L+1 [~97%L]	amido-phenolate moiety to azo
			(27%)	
1.7047	727	0.0273	<i>α</i> −H [~96%L]→	Intra and inter-ligand CT involving
			α–L [~99%L] (29%)	amido-phenolate moiety to azo
			α–H [~96%L]→	Intra and inter-ligand CT involving
			α–L+1 [~97%L]	amido-phenolate moiety to azo
			(15%)	
			β -H [~96%L] \rightarrow 47	Intra and inter-ligand CT involving

			$\beta\!\!-\!\!\mathrm{H} \left[\sim\!\!96\%\mathrm{L}\right]\!\!\rightarrow$	Intra and inter-ligand CT involving
			β –L + 1 [~97%L]	amido-phenolate moiety to azo
			(15%)	
1.9526	635	0.1014	$\alpha \!\!-\!\!\mathrm{H}\!-\!1\;[\sim\!\!99\%\mathrm{L}]\!\!\rightarrow$	Intra and inter-ligand CT involving
			α–L+1 [~97%L]	amido-phenolate moiety to azo
			(37%)	
			β–H – 1 [~99%L]→	Intra and inter-ligand CT involving
			β–L+1 [~97%L]	amido-phenolate moiety to azo
			(37%)	
1.9661	631	0.1168	α–H − 1 [~99%L]→	Intra and inter-ligand CT involving
			α-L [~99%L] (38%)	amido-phenolate moiety to azo
			β–H – 1 [~99%L]→	Intra and inter-ligand CT involving
			β–L [~99%L] (38%)	amido-phenolate moiety to azo
2.4124	514	0.0328	α–H – 1 [~99%L]→	LMCT involving amido-phenolate to
			α–L+2 [~40%M]	Со
			(47%)	
			β–H – 1 [~99%L]→	LMCT involving amido-phenolate to
			β–L+2 [~40%M]	Со
			(47%)	
2.5815	480	0.0362	<i>α</i> −H − 2 [~92%L]→	Intra ligand CT involving amido-
			α–L [~99%L] (41%)	phenolate moiety to azo
			β–H – 2 [~92%L]→	Intra ligand CT involving amido-
			β–L [~99%L] (41%)	phenolate moiety to azo
			` /	
2.6915	461	0.0241	α–H −1 [~99%L]→	LMCT involving amido-phenolate to

S49

			(17%)	
			α-H -3 [~99%L] → α-L + 1 [~97%L] (19%)	Intra-ligand CT involving amido- phenolate moiety to azo
			β-H −1 [~99%L]→ β-L + 3 [~37%M] (17%)	LMCT involving amido-phenolate to Co
			β–H –3 [~99%L]→ β–L + 1 [~97%L] (19%)	Intra-ligand CT involving amido- phenolate moiety to azo
2.7089	458	0.0459	α -H −1 [~99%L]→ α -L + 3 [~37%M] (30%)	LMCT involving amido-phenolate to Co
			β–H –1 [~99%L]→ β–L + 3 [~37%M] (30%)	LMCT involving amido-phenolate to Co

α–L+3 [~37%M]

Co