SUPPORTING INFORMATION

All inorganic made coordination polymers have been possible with the *m*-

carboranylphosphinate ligand.

Elena Oleshkevich,^a Isabel Romero,^b Francesc Teixidor^a and Clara Viñas,^{a,*}.

^a Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.

^b Departament de Química, Universitat de Girona, Campus de Montilivi, E-17003 Girona, Spain.

Figure S1. IR spectra of compounds a) 4, b) 6, c) 7, d) 8, e) 9, and comparison of IR spectra of compounds f) 1 and 2, g) 3 and 9, h) 2 and 9.

Figure S2. ¹¹B-NMR and ¹¹B $\{^{1}H\}$ -NMR spectra of the compound 4.

Figure S3. ¹¹B-NMR and ¹¹B $\{^{1}H\}$ -NMR spectra of the compound 6.

Figure S4. ¹H-NMR, ¹H{¹¹B}-NMR, ¹¹B-NMR, ¹¹B{¹H}-NMR, ³¹P-NMR, ¹³C{¹H}-NMR spectra of the compound 7.

Figure S5. ¹H-NMR, ¹H{¹¹B}-NMR, ¹¹B-NMR, ¹¹B{¹H}-NMR, ³¹P-NMR, ¹³C{¹H}-NMR spectra of the compound 8.

Figure S6. ¹¹B-NMR and ¹¹B $\{^{1}H\}$ -NMR spectra of the compound **9**.

Figure S7. Evolution of the ${}^{11}B{}^{1}H$ -NMR spectrum of compound **3** in MeOH/H₂O to produce lower nuclearity species.

Figure S8. Packing structure of Cd polymer 8.

Figure S9. X-ray powder diffraction (XRPD) of 6 (a) (Cu complex) and 7 (b) (Zn complex).

Figure S10. Thermal gravimetric analysis (TGA/DCS) of a) 6; b) 7; c) 8.

Figure S14. EPR of a) 1, b) 2 and c) 3 at different temperatures on powder samples.

Table S1. Crystal Data for X-ray structures of Co complex 4.

Table S2. Selected bond lengths (Å) and angles (°) for Co complex 4.

Table S3. Crystal Data for X-ray structures of Cd complex 8.

 Table S4. Selected bond lengths (Å) and angles (°) for Cd complex 8.

Table S5. Thermal gravimetric analysis (TGA) data for compounds 1-3, 6-8.

Figure S1. IR spectra of compounds a) 4, b) 6, c) 7, d) 8, e) 9, and comparison of IR spectra of compounds f) 1 and 2, g) 3 and 9, h) 2 and 9.

Figure S2. ¹¹B-NMR and ¹¹B{¹H}-NMR spectra of the compound **4** ¹¹B-NMR

Figure S3. ¹¹B-NMR and ¹¹B{¹H}-NMR spectra of the compound 6

Figure S4. ¹H-NMR, ¹H{¹¹B}-NMR, ¹¹B-NMR, ¹¹B{¹H}-NMR, ³¹P-NMR, ¹³C{¹H}-NMR spectra of the compound **7**.

9

 ${}^{11}B{}^{1}H{}-NMR$

Figure S5. ¹H-NMR, ¹H{¹¹B}-NMR, ¹¹B-NMR, ¹¹B{¹H}-NMR, ³¹P-NMR, ¹³C{¹H}-NMR spectra of the compound **8**.

Figure S6. ¹¹B-NMR and ¹¹B{¹H}-NMR spectra of the compound **9**.

28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 f1 (ppm)

Figure S7. Evolution of the ${}^{11}B{}^{1}H$ -NMR spectrum of compound **3** in MeOH/H₂O to produce lower nuclearity species as compound **2**.

Figure S8. Packing structure of Cd polymer 8.

Figure S9. X-ray powder diffraction (XRPD) of 6 (a) (Cu complex) and 7 (b) (Zn complex)

a)

18

a)

Figure S11. EPR of a) coordination polymer 1, b) 2 and c) coordination polymer 3 at different temperatures on powder samples.

c)

	4
Empirical formula	$C_4H_{36}B_{20}CoO_{10}P_2$
Formula weight	581.42
Crystal system	Monoclinic
Space group	<i>C2/m</i>
a [Å]	11.184(2)
b [Å]	7.435(15)
c [Å]	17.041(3)
α [°]	90
β [°]	91.21(3)
γ [°]	90
V [Å ³]	1416.7(5)
Formula Units/Cell	2
$\rho_{\text{calc.}} [g \text{ cm}^{-3}]$	1.335
μ [mm ⁻¹]	1.036
$R1^{[a]}, [I > 2\sigma(I)]$	0.0868
$wR_2^{[b]}$ [all data]	0.2473

Table S1. Crystal Data for X-ray structures of Co complex, 4.

[a] $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$

[b] $wR_2 = [\Sigma \{w(F_o^2 - F_c^2)^2\} / \Sigma \{w(F_o^2)^2\}]^{\frac{1}{2}}$, where $w=1/[\sigma^2(Fo^2) + (0.0042P)^2]$ and $P=(F_o^2 + 2F_c^2)/3$

	4
Co(1)-O(3)	2.103(3)
Co(1)-O(3)#1	2.103(3)
Co(1)-O(3)#2	2.103(3)
Co(1)-O(2)#3	2.103(3)
Co(1)-O(2)	2.078(4)
Co(1)-O(2)#2	2.079(4)
O(2)-Co(1)-O(2)#2	180.00
O(2)-Co(1)-O(3)	86.97(10)
O(2)#2-Co(1)-O(3)	93.03(10)
O(2)-Co(1)-O(3)#1	86.97(10)
O(2)#2-Co(1)-O(3)#1	93.03(10)
O(3)-Co(1)-O(3)#1	99.45(15)
O(2)-Co(1)-O(3)#3	93.03(10)
O(2)#2-Co(1)-O(3)#3	86.97(10)
O(3)-Co(1)-O(3)#3	80.55
O(3)#1-Co(1)-O(3)#3	180.00(17)
O(2)-Co(1)-O(3)#2	93.03(10)
O(2)#2-Co(1)-O(3)#2	86.97(10)
O(3)-Co(1)-O(3)#2	180.00
O(3)#1-Co(1)-O(3)#2	80.55(15)
O(3)#3-Co(1)-O(3)#2	99.45(15)

Table S2. Selected bond lengths (Å) and angles (°) for Co complex, 4.

Symmetry transformations used to generate equivalent atoms:

#1 x,-y,z #2 -x+1,-y,-z #3 -x+1,y,-z

	6
Empirical formula	$C_8H_{60}B_{40}Cd_3Cl_2O_{14}P_4$
Formula weight	1344.94
Crystal system	Triclinic
Space group	<i>P-1</i>
a [Å]	7.3508(18)
b [Å]	10.847(3)
c [Å]	16.600(4)
α [°]	106.839(4)
β [°]	95.487(4)
γ [°]	92.549(4)
V [Å ³]	1257.4(6)
Formula Units/Cell	1
$\rho_{calc.} [g \ cm^{-3}]$	1.760
μ [mm ⁻¹]	1.542
$R1^{[a]}, [I > 2\sigma(I)]$	0.0526
$wR_2^{[b]}$ [all data]	0.1391

 Table S3. Crystal Data for X-ray structures of Cd complex 8.

$$\begin{split} & [a] \ R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o| \\ & [b] \ wR_2 = [\Sigma \{ w(F_o{}^2 - F_c{}^2)^2 \} / \Sigma \{ w(F_o{}^2)^2 \}]^{\frac{1}{2}} \text{, where } w = 1 / [\sigma^2(Fo^2) + (0.0042P)^2] \text{ and } P = (F_o{}^2 + 2F_c{}^2) / 3 \end{split}$$

Cd(1)-Cl(4)	2.5310(11)	O(1)-Cd(1)-O(5)#1	96.43(9)
Cd(1)-O(1)	2.327(2)	Cl(4)#1-Cd(1)-O(5)	89.92(8)
Cd(1)-O(5)	2.330(3)	O(1)#1-Cd(1)-O(5)	96.43(9)
Cd(1)-Cl(4)#1	2.5310(11)	O(5)-Cd(1)-O(5)#1	180.00
Cd(1)-O(1)#1	2.327(2)	Cl(4)#1-Cd(1)-O(1)#1	91.65(6)
Cd(1)-O(5)#1	2.330(3)	Cl(4)#1-Cd(1)-O(5)#1	90.08(8)
Cd(2)-Cl(4)	2.5320(11)	O(1)#1-Cd(1)-O(5)#1	83.57(9)
Cd(2)-O(2)	2.207(3)	Cl(4)-Cd(2)-O(2)	95.91(8)
Cd(2)-O(7)	2.300(3)	Cl(4)-Cd(2)-O(7)	88.03(6)
Cd(2)-O(8)	2.313(2)	Cl(4)-Cd(2)-O(8)	93.17(6)
Cd(2)-O(9)	2.359(3)	Cl(4)-Cd(2)-O(9)	99.61(8)
Cd(2)-O(10)	2.303(3)	Cl(4)-Cd(2)-O(10)	171.04(8)
Cl(4)-Cd(1)-O(1)	91.65(6)	O(2)-Cd(2)-O(7)	175.97(10)
Cl(4)-Cd(1)-O(5)	90.08(8)	O(2)-Cd(2)-O(8)	91.36(10)
Cl(4)-Cd(1)-Cl(4)#1	180.00	O(2)-Cd(2)-O(9)	88.62(11)
Cl(4)-Cd(1)-O(1)#1	88.35(6)	O(2)-Cd(2)-O(10)	92.43(11)
Cl(4)-Cd(1)-O(5)#1	89.92(8)	O(7)-Cd(2)-O(8)	89.25(8)
O(1)-Cd(1)-O(5)	83.57(9)	O(7)-Cd(2)-O(9)	89.90(10)
Cl(4)#1-Cd(1)-O(1)	88.35(6)	O(7)-Cd(2)-O(10)	83.68(10)
O(1)-Cd(1)-O(1)#1	180.00	O(8)-Cd(2)-O(9)	167.15(10)

Compound	% weight loss (T[°C])
1	38.49 (483)
2	40.90 (507)
3	47.71 (430)
6	7.3 (160), 6.5 (290), 14.4 (420)
7	7.20 (350), 42 (420)
8	7.11 (130), 41 (600)

 Table S5. Thermal gravimetric analysis (TGA) data for compounds 1-3, 6 -8.