A New Tetra-Zr(IV) Substituted Polyoxotungstate Aggregate

Hai-Lou Li, Yue-Lin Wang, Zhong Zhang, Bai-Feng Yang, and Guo-Yu Yang*

MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing

102488, China. E-mail: ygy@bit.edu.cn

Electronic Supplementary Information

The refinement details in 1

Figure S1. The experimental and simulated PXRD patterns of 1.

Figure S2. The polyoxoanionic structure of the 1. W (blue balls), Zr (brilliant yellow balls), O (red balls), P (pink

balls) and Sb (brilliant green balls). Atoms with A in their labels are symmetrically generated. A: 1–x, 2–y, 1–z.

Figure S3. (a) The polyhedral view of ring the $\{Zr_4W_4P_2\}$; (b) The simplified packing of $\{Zr_4W_4P_2\}$.

Figure S4. (a) The structure of **1a**; (b) The lozenge of the four P atoms (P2, P3, P2A and P3A); (c) The rectangle of the four Zr^{4+} ions ($Zr1^{4+}$, $Zr2^{4+}$, $Zr1A^{4+}$ and $Zr2A^{4+}$); (d) The angle between lozenge and the rectangle.

Figure S5. (a) The view of the extraordinary 2-D pillar-supporting architecture along the *a*-axis in **1**. Lattice water molecules, $[H_2N(CH_3)_2]^+$ and no acting as a bridged Na⁺ ions are omitted for clarity. (b) The simplified packing of **1** viewed along the *a*-axis. (c) The simplified packing of **1** viewed along the *b* axis.

Figure S6. The TG curve of 1

Figure S7. (a) The IR spectrum of 1. (b) The IR spectra of 1 and Sb_2O_3 .

Figure S8. (a) The cyclic voltammograms of **1** at various concentrations of H_2O_2 . (b) The cyclic voltammograms of **1** at the different concentrations of NaBrO₃.

Table S1. Bond Valence Sum (BVS) calculations of all W, Zr, Sb, P and O Atoms in 1a.

Table S2. The peak potentials for all the redox waves for **1** determined by CV in 0.5 mol·L⁻¹ Na₂SO₄ + H₂SO₄ aqueous solution at pH = 5.6. Scan rate: 50 mV·s⁻¹.

Table S3. The CAT versus concentration of H_2O_2 and $NaBrO_3$ for 1.

Figure S1. The experimental and simulated PXRD patterns of 1.

Figure S2. The polyoxoanionic structure of the **1**. W (blue balls), Zr (brilliant yellow balls), O (red balls), P (pink balls) and Sb (brilliant green balls). Atoms with A in their labels are symmetrically generated. A: 1-x, 2-y, 1-z.

Figure S3. (a) The polyhedral view of ring the $\{Zr_4W_4P_2\}$; (b) The simplified packing of $\{Zr_4W_4P_2\}$.

Figure S4. (a) The structure of **1a**; (b) The lozenge of the four P atoms (P2, P3, P2A and P3A); (c) The rectangle of the four Zr^{4+} ions ($Zr1^{4+}$, $Zr2^{4+}$, $Zr1A^{4+}$ and $Zr2A^{4+}$); (d) The angle between lozenge and the rectangle.

Figure S5. (a) The view of the extraordinary 2-D pillar-supporting architecture along the *a* axis in **1**. Lattice water molecules, $[H_2N(CH_3)_2]^+$ and no acting as a bridged Na⁺ ions are omitted for clarity. (b) The simplified packing of **1** viewed along the *a* axis. (c) The simplified packing of **1** viewed along the *b* axis.

Figure S6. The TG curve of 1.

Figure S7. (a) The IR spectrum of 1. (b) The IR spectra of 1 and Sb₂O₃.

Figure S8. The IR spectra of 1 at different temperatures.

Figure S9. (a) The cyclic voltammograms of **1** at various concentrations of H_2O_2 . (b) The cyclic voltammograms of **1** at the different concentrations of NaBrO₃.

Atom	BVS	Atom	BVS	Atom	BVS
W1	6.178	W2	6.167	W3	6.122
W4	6.323	W5	6.320	W6	6.150
W7	6.183	W8	6.170	W9	6.300
W10	6.142	W11	6.310	W12	6.096
W13	6.280	W14	6.177		
Zr1	3.900	Zr2	3.883		
Sb1	2.790				

P1	5.121	P2	5.110	Р3	5.055
01	1.390	02	1.478	03	1.862
04	2.015	05	2.009	06	1.919
07	1.829	08	1.855	09	1.870
010	1.978	011	1.909	012	1.903
013	1.998	014	1.922	015	1.877
016	1.974	017	2.058	018	1.989
019	2.060	020	1.758	021	1.860
022	1.916	023	2.291	024	1.870
025	1.867	026	2.011	027	1.968
028	1.698	029	0.994	O30	1.764
031	1.712	032	1.931	033	1.712
034	1.680	035	1.716	O36	1.740
037	1.778	038	1.680	039	1.676
O40	1.977	041	1.717	042	1.934
043	1.640	044	2.025	045	1.928
O46	1.998	047	2.050	048	1.877
049	1.745	050	1.676	051	1.877
052	1.891	053	2.027	054	1.826
055	1.895	056	1.985	057	1.922
058	1.939	O59	1.834	O60	2.016
061	1.870				

Table S2. The peak potentials for all the redox waves for **1** determined by CV in 0.5 mol·L⁻¹ Na₂SO₄ + H₂SO₄ aqueous solution at pH = 5.6. Scan rate: 50 mV·s⁻¹.

I/V	ľ / V	E _{1/2} / V	ΔΕ _p / V
-0.712	-0.502	-0.607	-0.210
II	II '		

C / mol L ⁻¹	1×10 ⁻⁴	1×10 ⁻³	1×10 ⁻²	3×10 ⁻²	5×10 ⁻²	7×10 ⁻²	9×10 ⁻²
CAT (H_2O_2)	4.22%	9.98%	19.19%	39.92%	64.49%	90.40%	109.40%
CAT (Na ₃ BrO ₃)	5.48%	7.31%	9.32%	14.62%	16.45%	21.21%	25.59%

Table S3. The CAT versus concentration of H_2O_2 and $NaBrO_3$ for 1.