Supporting Information

Pyrolysis of Metal–Organic Framework (CuBTC) decorated Filter Paper as a low-cost and highly active Catalyst for the reduction of 4-Nitrophenol

Lihua Zhi,*^a Hua Liu,^a Youyuan Xu,^a Dongcheng Hu,^a Xiaoqiang Yao^a and Jiacheng Liu*^a ^aKey Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (P.R. China).* *Corresponding author. Fax:* +86-931-7971989; *e-mail: zhilh@nwnu.edu.cn; jcliu8@nwnu.edu.cn*

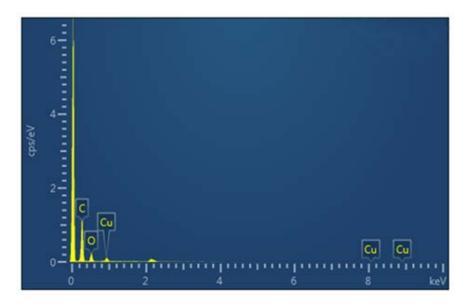
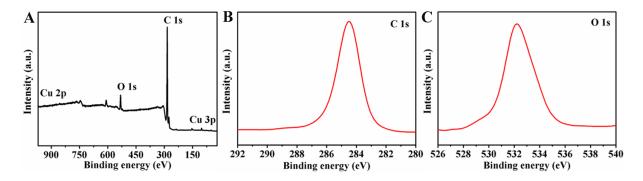



Figure S1. EDX data of the Cu_xO@C-400.

Figure S2. (A) XPS survey spectrum of $Cu_xO@C-400$. High-resolution scans for the C 1s (B) and O 1s (E) electrons of the $Cu_xO@C-400$.

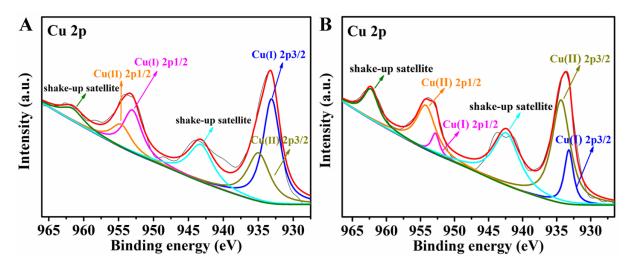
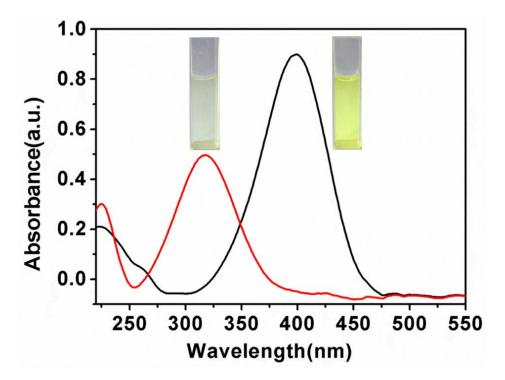



Figure S3. High-resolution scans for the Cu 2p electron of $Cu_xO@C-300$ (A) and $Cu_xO@C-500$ (B).

Figure S4. UV–vis spectroscopy of 4-NP solution before (red line) and after (black line) addition of NaBH₄. Inset: color change of 4-nitrophenol solution before (left) and after (right) the addition of NaBH₄.

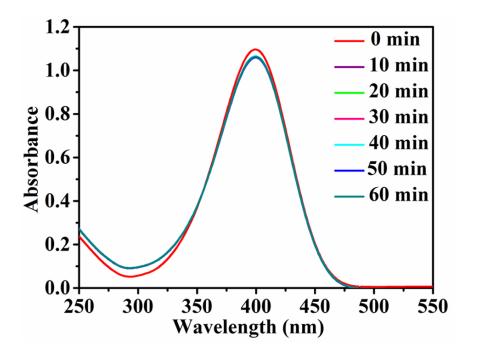
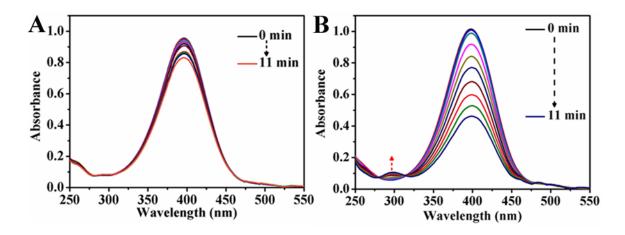



Figure S5. Time-dependent UV-vis spectra of the reaction solution in the absence of $Cu_xO@C-400$.

Figure S6. Time-dependent UV-visible spectrum for the reduction of 4-nitrophenol to 4-aminophenol in water after adding 2 mg of $Cu_xO@C-300$ (A), $Cu_xO@C-500$ (B) The concentration of 4-nitrophenolate was 5.3 μ M, and that of sodium borohydride was 0.33 mM.

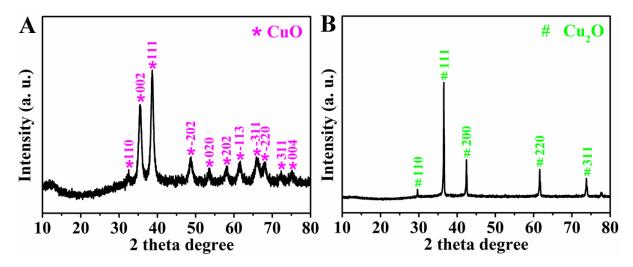
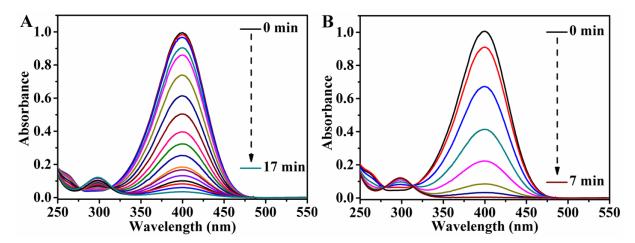



Figure S7. (A) XRD pattern of the CuO. (B) XRD pattern of the Cu₂O.

Figure S8. Time-dependent UV–visible spectrum for the reduction of 4-nitrophenol to 4-aminophenol in water after adding 2 mg of CuO (A) and 2 mg of Cu₂O (B). The concentration of 4-nitrophenolate was $5.3 \,\mu$ M, and that of sodium borohydride was $0.33 \,m$ M.

catalyst	4-NP : NaBH ₄ (mol/mol)	k _{app} (s ⁻¹)	ref.
Au/SiO ₂	1:100	0.3 * 10 ⁻³	47
Au@MSNs	1:400	1.6 * 10 ⁻³	9
Ag/SiO ₂	1:400	$2.7 * 10^{-3}$	48
CNC@PDA-AgNPs	1:317	$4.3 * 10^{-3}$	49
Bio-Pd	1:100	$3.7 * 10^{-4}$	50
CuBTC-400	1:62.5	$0.52 * 10^{-3}$	This work
FPs-400	1:62.5	4.4 * 10 ⁻⁶	This work
Cu _x O@C-300	1:62.5	$0.21 * 10^{-3}$	This work
Cu _x O@C-400	1:62.5	4.8 * 10 ⁻³	This work
Cu _x O@C-500	1:62.5	1.6 * 10 ⁻³	This work

Table S1. Comparison of the catalytic activity among the state-of-art notable metal based

 catalysts and the catalysts synthesized in this work

The apparent rate constant (κ_{app}) can be calculated using following equation : $\ln(C_t/C_0) = \ln(A_t/A_0) = -\kappa_{app}t$, where C_t is the concentration of 4-NP at time t, κ_{app} is the apparent rate constant, The apparent rate constant was determined from the linear plot of $\ln(A_t/A_0)$ versus time.