Supporting Information

Donor-stabilized molecular Mg/Al-bimetallic hydrides

Christoph Stuhl, Markus M. Katzenmayer, Cäcilia Maichle-Mössmer and Reiner Anwander*

Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany

*To whom correspondence should be addressed. E-mail: reiner.anwander@uni-tuebingen.de

Table of Contents

Table S1. Crystallographic data for compounds 1, 2, 3, 4, and 5	
General procedure for the hydromagnesation of 1-hexene	
Table S2. Reaction conditions for hydromagnesation reactions	
Notes on NMR spectroscopic characterisation	
Figure S1/S2. NMR spectra of 1	
Figure S3/S4. NMR spectra of 2	
Figure S5/S6. NMR spectra of 3	
Figure S7/S8. NMR spectra of 4	
Figure S9. ¹ H EXSY NMR spectrum of 4	
Figure S10-S12. NMR spectra of 5	
Figure S13. NMR spectrum of HCp' protonolysis with 1	S11
Figure S14-S16. NMR spectra of reduction of pyridine	
Figure S17/S18. NMR spectra of hydromagnesation with 1	S13
Figure S19/S20. NMR spectra of hydromagnesation with 3	S14
Figure S21/S22. NMR spectra of hydromagnesation with 4	S15

	1	2	3	4	5
formula	C26H60MgAl2O5	C18H50MgAl2O3	C14H40MgAl2O4	C ₃₀ H ₈₄ Al ₄ Mg ₂ O ₂	C ₂₁ H ₄₁ AlMgO ₂
$M_r [g mol^{-1}]$	531.01	392.85	350.73	665.51	376.83
CCDC	1853436	1853437	1853438	1853439	1853440
color	colorless/block	colorless/block	colorless/block	colorless/plate	colorless/plate
crystal dimensions [mm]	0.433 x 0.166 x 0.157	0.718 x 0.506 x 0.456	0.819 x 0.608 x 0.483	0.347 x 0.136 x 0.094	0.287 x 0.282 x 0.218
cryst. syst.	triclinic	monoclinic	orthorhombic	monoclinic	orthorhombic
space group	PĪ	$P2_{1}/c$	$Pna2_1$	$P2_{1}/n$	$P2_1P2_1P2_1$
a [Å]	9.554(3)	22.886(3)	17.8880(4)	10.4747(7)	9.746(5)
<i>b</i> [Å]	12.015(4)	12.4234(17)	8.6400(2)	14.0615(9)	15.225(8)
<i>c</i> [Å]	15.069(5)	18.993(3)	14.9623(3)	15.7685(10)	15.880(9)
<i>α</i> [°]	90.875(6)	90	90	90	90
β[°]	92.171(6)	91.203(5)	90	95.423(4)	90
γ[°]	104.872(6)	90	90	90	90
$V\left[\mathrm{\AA}^{\scriptscriptstyle3} ight]$	1670.1(10)	5398.9(13)	2312.46(9)	2312.1(3)	2357(2)
Z	2	8	4	2	4
<i>T</i> [K]	100(2)	100(2)	100(2)	100(2)	150(2)
$ ho_{\text{calad}}$ [g cm ⁻³]	1.056	0.967	1.007	0.956	1.062
μ [mm ⁻¹]	0.134	0.142	0.162	0.153	0.123
F (000)	588	1760	776	744	832
θ range [°]	1.353/26.498	2.0105/11.34	2.277/28.270	3.416/22.49	2.4495/29.485
unique reflns	6875	11724	5493	5730	5419
observed reflns (I>2σ)	4676	9507	5337	4074	5219
R1/wR2 (I>2o) ^a	0.0859/0.1946	0.0649/0.1533	0.0243/0.0645	0.0449/0.1028	0.0313/0.0837
R1/wR2 (all data)	0.1286/0.2143	0.0890/0.1693	0.0253/0.0651	0.10742/0.1173	0.0331/0.0854
GOF	1.064	1.053	1.020	1.027	1.075

Table S1. Crystallographic data for compounds 1, 2, 3, 4, and 5

 $\boxed{[\mathbf{a}] R1 = \mathbf{\Sigma}(||F_{\circ}| - |F_{\circ}||)/\mathbf{\Sigma}|F_{\circ}|, F_{\circ} > 4\sigma(F_{\circ}). wR2 = \{\mathbf{\Sigma}[w(F_{\circ}^{2} - F_{\circ})^{2}/\mathbf{\Sigma}[w(F_{\circ}^{2})^{2}]\}^{w_{\circ}}.}$

General procedure for the hydromagnesation of 1-hexene. The metal hydrides were weighed into a vial and dissolved or suspended in 0.3 ml toluene- d_8 . To increase the solubility of the hydrides **3** and **4** two drops of THF- d_8 were added. 1-Hexene was dissolved in a second vial in 0.3 ml toluene- d_8 . The solutions were transferred and combined into a *J. Young* valve NMR sample tube and monitored by ¹H NMR spectroscopy. The reactions were heated carefully in steps of 10 °C until a reaction took place at 130 °C. After 16 h the reactions were stopped and in case of **1** heated again for additional 24 h. All reactions produced [MgH₂]_n as a white precipitate.

Substrate	1-hexene	<i>T</i> [° C]	time [h]	Yield Mg(<i>n</i> -hex) ₂
1, 20.0 mg, 43.6 µmol	7.34 mg, 87.2 μmol	130	16 h (40 h)	14% (19%)
3 , 20.0 mg, 57.1 μmol	9.61 mg, 114 µmol	130	16 h	6%
4, 20.0 mg, 30.1 μmol	10.1 mg, 120 µmol	130	16 h	2%

Table S2. Reaction conditions for hydromagnesation reactions

Notes on NMR spectroscopic characterisation.

Due to the limited solubility of **3** in toluene- d_8 two drops of THF- d_8 were added.

* residual solvent peak

~ reduced peak intensity

NMR Spectra

Figure S1. ¹H NMR spectrum (400 MHz) of 1 in toluene- d_8 26 at °C.

Figure S2. ¹³C{¹H} NMR spectrum (101 MHz) of **1** in toluene- d_8 at 26 °C.

Figure S3. ¹H NMR spectrum (400 MHz) of 2 in toluene- d_8 at 26 °C.

Figure S4. ¹³C{¹H} NMR spectrum (101 MHz) of **2** in toluene- d_8 at 26 °C.

Figure S5. ¹H NMR spectrum (400 MHz) of **3** in toluene- d_8 at 26 °C.

Figure S6. ¹³C{¹H} NMR spectrum (101 MHz) of **3** in toluene- d_8 at 26 °C.

Figure S7. ¹H NMR spectrum (400 MHz) of **4** in toluene- d_8 at 26 °C.

Figure S8. ¹³C{¹H} NMR spectrum (101 MHz) of 4 in toluene- d_8 at 26 °C.

Figure S9. ¹H EXSY NMR spectrum (400 MHz) of **4** in toluene- d_8 at 26 °C indicating hydrido exchange.

Figure S10. ¹H NMR spectrum (400 MHz) of **5** in benzene- d_6 after 1 h at 26 °C.

Figure S11. ¹H NMR spectrum (400 MHz) of **5** in benzene- d_6 after 16 h at 26 °C.

Figure S12. ¹³C{¹H} NMR spectrum (101 MHz) of 5 in benzene- d_6 overnight at 26 °C.

Figure S13. ¹H NMR spectra (400 MHz) of the protonolysis of **1** with HCp' in toluene- d_8 illustrating H₂ evolution (#).

Figure S14. ¹H NMR spectrum (400 MHz) of $[(py)_xMg(1,4-dihydropyridide)_2]$ in benzene- d_6 at 26 °C.

Figure S15. ¹³C{¹H} NMR spectrum (101 MHz) of $[(py)_xMg(1,4-dihydropyridide)_2]$ in benzene-*d*₆ at 26 °C. (# pyridine).

Figure S16. ¹H NMR spectra (400 MHz) of pyridine reduction by 1 and HAlMe₂ in benzene d_6 at 26 °C.

Figure S17. ¹H NMR spectrum (400 MHz) of the hydromagnesation of 1-hexene with 1 in toluene- d_8 at 26°C (40 h, 130 °C).

Figure S18. ¹H NMR spectra (400 MHz) of the hydromagnesation of 1-hexene with 1 in toluene- d_8 at 26 °C.

Figure S19. *In situ* ¹H NMR spectrum (400 MHz) of the hydromagnesiation of 1-hexene with **3** in toluene- d_8 at 26 °C after 16 h at 130 °C.

Figure S20. ¹H NMR spectra (400 MHz) of the hydromagnesation of 1-hexene with **3** in toluene- d_8 at 26 °C illustrating the decrease of Mg-H-Al species (#) and the product peaks.

Figure S21. *In situ* ¹H NMR spectrum (400 MHz) of the hydromagnesiation of 1-hexene with **4** in toluene- d_8 at 26 °C after 16 h at 130 °C.

Figure S22. ¹H NMR spectra (400 MHz) of the hydromagnesation of 1-hexene with **4** in toluene- d_8 at 26 °C illustrating the decrease of Mg-H-Al species (#) and the product peaks.