Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

A novel bis-1,2,4-benzothiadiazine pincer ligand: Synthesis, characterization and its first row transition metal complexes

Konstantina Pringouri, Muhammad U. Anwar*, Liz Mansour, Nathan Doupnik, Yassine Beldjoudi, Emma L. Gavey, Melanie Pilkington, and Jeremy M. Rawson*

Supplementary Information

Crystallographic Details

Table S1 Density functional theory (DFT) calculations of the isomers of LH2 using the dispersion-correctedB3LYP-D3 functional and 6-311G**.

 Table S2 Selected bond lengths and angles for complexes 1-7.

Table S3 Density functional theory (DFT) single point energy calculations of the conformation of the ligand found in the metal complexes using the dispersion-corrected B3LYP-D3 functional and 6-311G**.

Fig. S1 Numbering scheme of bis(2-(propylthio)phenyl)pyridine-2,6-bis(carboximidamide).

Fig. S2 Molecular structure of the by-product of the ligand (8).

Fig. S3 ¹H NMR of the ligand 8 in CDCl₃.

Fig. S4 Normalized cyclic voltammograms of ligand LH₂ ($C_0 = 5.96 \text{ mmol} \cdot L^{-1}$) in a solution of TBA(PF₆) in dichloromethane (0.047 mol $\cdot L^{-1}$).

Fig. S5 Solution UV-Vis spectra of complexes **1-6** as well as ligand **L**H₂ to emphasize the ligand-based nature of the spectroscopic properties.

Fig. S6 Molecular structure and side-view of complexes of $[Mn(LH_2)_2](1)$. (solvent molecules and counterions omitted for clarity).

Fig. S7 Molecular structure and side-view of complexes of $[Fe(LH_2)_2]$ (3). (solvent molecules and counterions omitted for clarity).

Fig. S8 Molecular structure and side-view of complexes of $[Co(LH_2)_2]$ (4). (solvent molecules and counterions omitted for clarity).

Fig. S9 Molecular structure and side-view of complexes of $[Ni(LH_2)_2]$ (5). (solvent molecules and counterions omitted for clarity).

Fig. S10 Molecular structure and side-view of complexes of $[Zn(LH_2)_2]$ (6). (solvent molecules and counterions omitted for clarity).

Fig. S11 ¹H NMR of complex 3 (top) and LH₂ (bottom).

Fig. S12 ¹H NMR of complex **6** (d_3 -MeCN).

Fig. S13 Cyclic voltammogram of **2** (black) and LH_2 (red) in dichloromethane (0.047 mol·L⁻¹) with [*n*Bu₄N][PF₆] supporting electrolyte at a scan rate of 0.2 V/s.

Fig. S14 Room temperature solution X-band EPR spectrum of $[Mn(LH_2)_2][CF_3SO_3]_2$ in THF (g = 1.998). Simulation $a_{Mn} = 94.7$ G, line width = 42 G_{pp}.

Fig. S15 Room temperature solid state EPR spectrum of $Cu(LH_2)(NO_3)_2$ [Simulation: $g_x = 2.29$, $g_y = 2.07$, $g_z = 2.65$, $a_{Cux} = 10G$, $a_{Cuy} = a_{Cuz} = 20G$, $\Delta H_x = 190$ G, $\Delta H_y = 35$ G, $\Delta H_z = 25$ G].

Fig. S16 Cyclic voltammogram of **2** (black, a) and LH_2 (red, b) in dichloromethane (0.047 mol·L⁻¹) with [*n*Bu₄N][PF₆] supporting electrolyte at a scan rate of 0.2 V/s.

Additional Crystallographic Details

Complex **1** exhibited rotational disorder of both the CF_3 and SO_3 groups of the triflate counterion which was modelled over two sites in a 1:1 ratio with common U_{iso} .

For complex **2** two acetonitrile molecules were located, one of which was part occupancy. The *sof* of the partial occupancy was refined against the full-occupancy MeCN using a common U_{iso} for chemically equivalent atoms. Attempts to refine the MeCN anisotropically led to distorted ellipsoids indicating potential disorder in MeCN positions. The solvent was refined isotropically given the poor data: parameter ratio. Residual diffuse electron density appeared associated with a disordered solvent molecule which was modelled as an O atom (H₂O) over 5 sites until the residual electron density was less than $1 e^{-}/A^{3}$. In the latter stages of refinement, a 2-component inversion twin was included to accommodate a slight twinning based on the Flack parameter (< 0.05).

Both BF_4^- anions in complex **3** showed some disorder; one BF_4^- *via* a rotation about two F atoms which are Hbonded to N-H groups and the second one *via* translational disorder reflected in elongated U_{ij} in the same direction for all five atoms. The former was modelled over two sites using common U_{iso} to identify *sof*'s and then the *sof* were fixed and and U_{ij} refined anisotropically. The second BF_4^- was modelled isotropically over three sites with common U_{iso} in a 0.25:0.25:0.50 ratio. Two MeCN molecules were identified and refined with 1,2- and 1,3-DFIX commands to maintain a linear geometry. One MeCN was disordered over two sites *via* a pivoting motion about the terminal N atom. Two part occupancy O atoms were located in the vicinity of a ligand N-H group - subsequent anisotropic refinement led to further splitting and in latter cycles of least squares the O was refined isotropically over 4 positions with common U_{iso} . Residual remaining electron density was treated with SQUEEZE. Although the final *R* values remained relatively high, the connectivity of the cationic complex and the two BF_4^- anions were clearly defined.

For complex **5**, H atoms were added at calculated positions except N-H and H-bonded O-H groups of MeOH solvate which were located in the difference map and refined with a common U_{iso} and DFIX restraints. One of the four MeOH solvent molecules was not H-bonded and poorly defined within the structure. This was refined isotropically over three sites using common U_{iso} for C and O atoms to afford *sof*'s of 0.27, 0.37 and 0.37 respectively and led to residual electron density less than $1e^{-1}$ in the vicinity of this solvent molecule. Complex **6** exhibited disorder in one triflate anion which was modelled over two sites in a 50:50 ratio with appropriate geometric constraints for CF₃ and SO₃ units. For complex **7**, hydrogen atoms were added at calculated positions except N-H protons which were located in the difference map and refined freely with common U_{iso} .

Table S1 Relative energies of the isomers of LH_2 computed using density functional theory (DFT) calculations with the dispersion-corrected B3LYP-D3 functional and 6-311G^{*+} basis set.

	SCN NN NN S	H N N N N N N N N S N H N S		
Energy/kJ/mol	0	27	81	
Torsion angle/°	-7.3/3.65	2.95/-138.97	-128.84/136.59	

	M-N _{py} /Å	M-N _{BTDA} /Å	N _{py} MN _{BTDA} /° ^a	N _{py} MN _{BTDA} /° ^b	N _{BTDA} MN _{BTDA} /°	N _{py} MN _{py} /°
Mn (1)	2.276(2) 2.297(2)	2.201(2)	71.00(8) 72.22(8)	103.55(8) 113.50(8)	86.05(8) 104.77(12) 106.62(12) 142.96(8)	171.23(12)
Fe (2)	1.864(5) 1.888(5)	1.969(5) 1.969(5) 1.973(5) 1.975(5)	79.9(2) 79.9(2) 80.0(2) 80.1(2)	98.7(2) 101.4(2) 99.3(2) 100.7(2)	91.2(2) 91.6(2) 91.7(2) 92.4(2) 159.9(2)	178.6(2)
Fe (3)	1.881(4)	1.962(5) 1.967(5) 1.970(4) 1.976(4)	79.63(19) 79.80(18) 80.29(17) 80.36(19)	98.20(17) 99.95(19) 100.04(19) 101.71(17)	89.48(19) 90.21(19) 93.04(19) 94.15(19) 160.0(2) 160.09(19)	178.47(17)
Co (4)	2.046(3) 2.059(3)	2.128(3) 2.139(3) 2.144(3) 2.157(3)	74.93(10) 75.04(10) 75.51(11) 75.61(10)	93.94(10) 94.45(10) 116.43(11) 117.39(11)	90.38(11) 92.28(11) 93.94(11) 99.90(11) 147.63(11) 149.37(11)	163.82(11)
Ni (5)	1.985(2) 1.987(2)	2.080(2) 2.081(2) 2.083(2) 2.094(2)	77.16(10) 77.29(10) 77.41(9) 77.53(9)	93.16(10) 93.32(9) 100.85(9) 104.57(10)	91.85(10) 92.66(9) 93.16(10) 93.32(9) 154.57(10) 154.82(9)	177.98(10)
Zn (6)	2.054(3) 2.055(3)	2.165(3) 2.266(3) 2.209(3) 2.312(3)	75.35(11) 103.87(11) 75.39(11) 103.17(11)	73.63(11) 73.98(11) 106.94(11) 107.81(11)	80.69(11) 105.11(16) 110.12(16) 149.12(11) 78.85(11) 109.38(15) 109.92(16) 149.00(10)	174.64(17) 176.37(17)
Cu (7) ^c	1.9294(19)	2.041(2) 2.0505(19)	79.33(8) 79.36(8)	-	157.77(8)	-

Table S2 Selected bond lengths and angles for complexes 1 - 7.

^{*a*} Angle within the chelate ring. ^{*b*} Angles between N atoms in different rings. ^{*c*} Cu-O/Å = 1.9298(16)-2.651(2), O-Cu-O/° = 53.95(7)-153.68(6), O-Cu-N/° = 86.83(7)-173.05(7).

Table S3 Density functional theory (DFT) single point energy calculations of the relative energies of theligand conformations in the metal complexes using the dispersion-corrected B3LYP-D3 functional and 6-311G** basis set.

Complex	Mn (1)	Fe (2)	Zn (6)	
Energy/kJ/mol	0	46	18	

Fig. S1 Numbering scheme of bis(2-(propylthio)phenyl)pyridine-2,6-bis(carboximidamide) (left) and LH₂ (right).

Fig. S2 Molecular structure of the by-product of the ligand (8).

Fig. S3 ¹H NMR of the ligand **8** in $CDCl_3$ (top) and comparison of the ligand LH_2 (blue) and the decomposed product **8** (red) (bottom).

Fig. S4 Normalized cyclic voltammograms of ligand LH_2 ($C_0 = 5.96 \text{ mmol} \cdot L^{-1}$) in a solution of TBA(PF₆) in dichloromethane (0.047 mol $\cdot L^{-1}$).

Fig. S5 Solution UV-Vis spectra of complexes **1-6** as well as ligand LH₂ to emphasize the ligand-based nature of the spectroscopic properties.

Fig. S6 Molecular structure and side-view of complexes of $[Mn(LH_2)_2](1)$. (solvent molecules and counterions omitted for clarity).

Fig. S7 Molecular structure and side-view of complexes of $[Fe(LH_2)_2]$ (3). (solvent molecules and counterions omitted for clarity).

Fig. S8 Molecular structure and side-view of complexes of $[Co(LH_2)_2]$ (4). (solvent molecules and counterions omitted for clarity).

Fig. S9 Molecular structure and side-view of complexes of $[Ni(LH_2)_2]$ (5). (solvent molecules and counterions omitted for clarity).

Fig. S10 Molecular structure and side-view of complexes of $[Zn(LH_2)_2]$ (6). (solvent molecules and counterions omitted for clarity).

Fig. S11 ¹H NMR of complex 3 (top) and LH₂ (bottom).

Fig. S12 ¹H NMR of complex 6 (d₃-MeCN).

Fig. S13 Cyclic voltammogram of complex **2** (black) and LH_2 (red) in dichloromethane (0.047 mol·L⁻¹) with [nBu_4N][PF₆] supporting electrolyte at a scan rate of 0.2 V/s.

Fig. S14. Room temperature solution X-band EPR spectrum of $[Mn(LH_2)_2][CF_3SO_3]_2$ in THF (g = 1.998). Simulation $a_{Mn} = 94.2$ G, line width = 42.3 G_{pp}.

Fig. S15. Room temperature solid state EPR spectrum of $Cu(LH_2)(NO_3)_2$ [Simulation: $g_x = 2.29$, $g_y = 2.07$, $g_z = 2.65$, $a_{Cux} = 10G$, $a_{Cuy} = a_{Cuz} = 20G$, $\Delta H_x = 190$ G, $\Delta H_y = 35$ G, $\Delta H_z = 25$ G].

Fig. S16. Cyclic voltammogram of **2** (black, a) and LH_2 (red, b) in dichloromethane (0.047 mol·L⁻¹) with [nBu_4N][PF₆] supporting electrolyte at a scan rate of 0.2 V/s.