Electronic Supporting Information

N, N-Dialkylbenzimidazol-2-ylidene platinum complexes effects of alkyl residues and ancillary cis-ligands on their anticancer activity

Tobias Rehm, ${ }^{\text {a }}$ Matthias Rothemund, ${ }^{\text {a }}$ Alexander Bär, ${ }^{\text {a }}$ Thomas Dietel, ${ }^{\mathrm{b}}$ Rhett Kempe, ${ }^{\text {b }}$ Hana Kostrhunova, ${ }^{\text {c }}$

[^0]
Table of content:

General information S1
Synthesis and characterization of benzimidazolium chlorides S2
X-ray structural data of complexes $\mathbf{8 b}, 9 \mathrm{c}$ and 10a (Table S1) S3
NMR spectra of complexes 8a-d, 9a-d and 10a-c (Fig. S1-S40) S4
Values of cellular accumulation of complexes 8c, 9a-d, 10c and CDDP (Table S2) S25
Sequence preferences of complexes $\mathbf{8 c}$, 9c and 10a-c (Table S3) S25
Influence of complexes 8c, 9c, 10a-c and CDDP on the melting point of ct DNA (Fig. S41) S25
Influence of complexes 8c, 9c, 10a-c and CDDP on the relative Tb $^{3+}$ ion fluorescence (Fig. S42) S26
Unwinding of negatively supercoiled pSP73 plasmid DNA by 8c, 9c, 10a-c and CDDP (Fig. S43) S26
Cell cycle analysis of complexes $\mathbf{8 c}$, 9 c and $\mathbf{1 0 c}$ in HCT116-/ cells(Fig. S44) S27
$\begin{array}{ll}\text { References } & \text { S27 }\end{array}$

[^1]
General information

All the chemicals and reagents were purchased from Sigma Aldrich, Alfa Aesar, ChemPur or ABCR and were used without further purification. Melting points are uncorrected; NMR spectra were run on a 500 MHz spectrometer; chemical shifts are given in ppm (δ) and referenced relative to the internal solvent signal; ${ }^{195} \mathrm{Pt}$ NMR shifts are quoted relative to $\equiv\left({ }^{195} \mathrm{Pt}\right)=21.496784 \mathrm{MHz}, \mathrm{K}_{2} \mathrm{PtCl}_{4}$ was used as external standard ($\delta=-1612.81$); mass spectra: direct inlet, EI, 70 eV ; elemental analyses: Vario EL III elemental analyser; X-Ray Diffractometer: STOE-IPDS II. Synthesis of benzimidazolium salts was performed based on literature procedures ${ }^{1-3}$ as described herein.

Synthesis and characterization of benzimidazolium chlorides 6

General procedure:

Benzimidazole (1eq) and the respective alkyl iodides or bromides ($5-10 \mathrm{eq}$) in acetonitrile ($10 \mathrm{~mL} / \mathrm{mmol}$) were treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(1.5 \mathrm{eq})$ and the mixture was heated to $50-70{ }^{\circ} \mathrm{C}$ for $1-5$ days. After filtration the solvent was evaporated in vacuo and the residue was crystalized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane.

The resulting benzimidazolium iodides/bromides were then stirred with $\mathrm{Ag}_{2} \mathrm{CO}_{3}(1 \mathrm{eq})$ and conc. HNO_{3} (kat.) in Ethanol for 3 h and after filtration of the silver halides the solution was treated with conc. HCl to obtain the respective benzimidazolium chlorides. After neutralization with NaHCO_{3} and further filtration the solvent was evaporated, and the solids were resuspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to filter off all inorganic residues. The product was then crystalized by adding hexane.

Synthesis of 1,3-dimethylbenzimidazolium chloride: ${ }^{1}$

Benzimidazole ($472 \mathrm{mg}, 4.0 \mathrm{mmol}$), iodomethane ($2.48 \mathrm{~mL}, 40 \mathrm{mmol}, 10 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(828 \mathrm{mg}, 6.0 \mathrm{mmol}$, 1.5 eq) in acetonitrile (40 mL) for 5 d at $50^{\circ} \mathrm{C}$ gave $1.004 \mathrm{~g}(92 \%)$ of the benzimidazolium iodide which was treated with $\mathrm{Ag}_{2} \mathrm{CO}_{3}(1.0 \mathrm{~g}, 3.7 \mathrm{mmol})$, conc. $\mathrm{HNO}_{3}(100 \mu \mathrm{~L})$ and conc. $\mathrm{HCl}(800 \mu \mathrm{~L})$ in $\mathrm{EtOH}(80 \mathrm{~mL})$. Yield: 632 mg (87 \%) white solid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 4.21(6 \mathrm{H}, \mathrm{s}) 7.67-7.71(2 \mathrm{H}, \mathrm{m}) 7.71-7.76(2 \mathrm{H}, \mathrm{m}) 10.75(1 \mathrm{H}$, s).

Synthesis of 1,3-diethylbenzimidazolium chloride: ${ }^{1}$

Benzimidazole ($500 \mathrm{mg}, 4.2 \mathrm{mmol}$), iodoethane ($1.26 \mathrm{~mL}, 21 \mathrm{mmol}, 5 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(871 \mathrm{mg}, 6.3 \mathrm{mmol}, 1.5 \mathrm{eq})$ in acetonitrile $(40 \mathrm{~mL})$ for 24 h at $70^{\circ} \mathrm{C}$ gave $1.278 \mathrm{~g}(100 \%)$ of the benzimidazolium iodide which was treated with $\mathrm{Ag}_{2} \mathrm{CO}_{3}(1.16 \mathrm{~g}, 4.2 \mathrm{mmol})$, conc. $\mathrm{HNO}_{3}(100 \mu \mathrm{~L})$ and conc. $\mathrm{HCl}(800 \mu \mathrm{~L})$ in $\mathrm{EtOH}(80 \mathrm{~mL})$. Yield: 880 mg (100 \%) white solid; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 1.77(6 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}) 4.70(4 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}) 7.66-7.70(2 \mathrm{H}$, m) $7.75-7.79(2 \mathrm{H}, \mathrm{m}) 11.08(1 \mathrm{H}, \mathrm{s})$.

Synthesis of 1,3-dibutylbenzimidazolium chloride: ${ }^{2}$

Benzimidazole ($2.0 \mathrm{~g}, 17 \mathrm{mmol}$), 1-bromobutane ($7.2 \mathrm{~mL}, 68 \mathrm{mmol}, 4 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.5 \mathrm{~g}, 26 \mathrm{mmol}, 1.5 \mathrm{eq})$ in acetonitrile (150 mL) for 5 d at $70^{\circ} \mathrm{C}$ gave $3.635 \mathrm{~g}(69 \%)$ of the benzimidazolium bromide which was treated with $\mathrm{Ag}_{2} \mathrm{CO}_{3}(3.22 \mathrm{~g}, 12 \mathrm{mmol})$, conc. $\mathrm{HNO}_{3}(100 \mu \mathrm{~L})$ and conc. $\mathrm{HCl}(800 \mu \mathrm{~L})$ in $\mathrm{EtOH}(100 \mathrm{~mL})$. Yield: 2.849 mg (63 \%) amber solid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 0.98(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) 1.44(4 \mathrm{H}, \mathrm{sxt}, J=7.5 \mathrm{~Hz}) 2.02(4 \mathrm{H}$, quin, $J=7.5 \mathrm{~Hz}) 4.59(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}) 7.64-7.68(2 \mathrm{H}, \mathrm{m}) 7.70-7.74(2 \mathrm{H}, \mathrm{m}) 11.46(1 \mathrm{H}, \mathrm{s})$.

Synthesis of 1,3-dioctylbenzimidazolium chloride: ${ }^{3}$

Benzimidazole ($236 \mathrm{mg}, 2.0 \mathrm{mmol}$), 1-bromooctane ($1.74 \mathrm{~mL}, 10 \mathrm{mmol}, 5 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(414 \mathrm{mg}, 3.0 \mathrm{mmol}$, 1.5 eq) in acetonitrile (20 mL) for 3 d at $70^{\circ} \mathrm{C}$ gave $461 \mathrm{mg}(54 \%)$ of the benzimidazolium bromide which was treated with $\mathrm{Ag}_{2} \mathrm{CO}_{3}(300 \mathrm{mg}, 1.1 \mathrm{mmol})$, conc. $\mathrm{HNO}_{3}(30 \mu \mathrm{~L})$ and conc. $\mathrm{HCl}(200 \mu \mathrm{~L})$ in $\mathrm{EtOH}(20 \mathrm{~mL})$. Yield: $398 \mathrm{mg}(52 \%)$ white solid; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 0.84-0.89(6 \mathrm{H}, \mathrm{m}) 1.20-1.40(20 \mathrm{H}, \mathrm{m}) 2.01(4 \mathrm{H}$, quin, $J=7.5 \mathrm{~Hz}) 4.54(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}) 7.64-7.69(2 \mathrm{H}, \mathrm{m}) 7.69-7.75(2 \mathrm{H}, \mathrm{m}) 11.05(1 \mathrm{H}, \mathrm{s})$.

Table S 1: X-ray structural data of platinum carbene complexes 8b, 9c and 10a.

Crystal data	8b	9c	10a
Chemical formula	$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OPtS}$	$\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{PPt}$	$\mathrm{C}_{45} \mathrm{H}_{40} \mathrm{ClN}_{2} \mathrm{P} 2 \mathrm{Pt} \cdot \mathrm{Cl}$
$M_{\text {r }}$	518.36	1517.27	936.72
Crystal system, space group	Triclinic, P^{-1}	Triclinic, P^{-1}	Monoclinic, P21/c
Temperature (K)	133	133	133
$a, b, c(A)$	8.675 (5), 9.264 (5), 10.601 (5)	9.1067 (18), 12.792 (3), 13.803 (3)	12.578 (5), 10.790 (5), 32.126 (5)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	91.874 (5), 103.182 (5), 94.722 (5)	88.02 (3), 87.59 (3), 71.06 (3)	90, 94.531 (5), 90
$V\left(\AA^{3}\right)$	825.5 (8)	1519.2 (6)	4346 (3)
z	2	1	4
F(000)	496	752	1864
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	2085	1.658	1431
Radiation type	Mo K α	Mo K ${ }^{\text {d }}$	Mo K α
No. of reflections for cell measurement	9824	31963	16101
θ range (${ }^{\circ}$) for cell measurement	2.0-28.5	1.5-30.1	1.6-27.7
$\mu\left(\mathrm{mm}^{-1}\right)$	8.95	4.87	3.46
Crystal shape	Needles	Block	Platte
Colour	Colourless	Colourless	Colourless
Crystal size (mm)	$0.11 \times 0.08 \times 0.07$	$0.36 \times 0.19 \times 0.15$	$0.20 \times 0.09 \times 0.08$
Data collection			
Diffractometer	STOE-STADIVARI	STOE-STADIVARI	STOE-STADIVARI
Scan method	ω-scan	ω-scan	ω-scan
	Numerical	Numerical	Numerical
Absorption	STOE X-RED32	STOE X-RED32	SROE X-RED32
$T_{\text {min }}, T_{\text {max }}$	0.680, 0.761	0.553, 0.719	0.863, 0.953
No. of measured, independent and observed $[I>2 \sigma(\Lambda)]$ reflections	7449, 3177, 2704	21191, 5907, 5605	32457, 8450, 5359
$R_{\text {int }}$	0.042	0.022	0.104
θ values (${ }^{\circ}$)	$\theta_{\text {max }}=26.0, \theta_{\text {min }}=2.0$	$\theta \max =26.0, \theta \min =1.5$	$\theta \max =26.0, \theta \min =1.6$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.617	0.617	0.617
	$h=-9 \rightarrow 10$	$\mathrm{h}=-5 \rightarrow 11$	$\mathrm{h}=-15 \rightarrow 8$
Range of h, k, l	$k=-11 \rightarrow 9$	$\mathrm{k}=-15 \rightarrow 15$	$\mathrm{k}=-13 \rightarrow 13$
	$1=-13 \rightarrow 11$	$\mathrm{l}=-16 \rightarrow 17$	$\mathrm{I}=-39 \rightarrow 37$

Refinement

Fig. S1: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of complex $\mathbf{8 a}$.

Fig. S 2: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{8 a}$.

Fig. S 3: ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ spectrum $\left(108 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{8 a}$.

Fig. S 4: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of complex $\mathbf{8} \mathbf{b}$.

Fig. S 5: ${ }^{13} \mathrm{C}$-NMR spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of complex $\mathbf{8 b}$.

Fig. S 6: ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ spectrum $\left(108 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{8 b}$.

Fig. S 7: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{8 c}$.

Fig. S 8: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{8 c}$.

Fig. S 9: ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ spectrum $\left(108 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{8 c}$.

Fig. S 10: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{8 d}$.

Fig. S 11: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{8 d}$.

Fig. S 12: ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ spectrum $\left(108 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{8 d}$.

Fig. S 13: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex 9a.

Fig. S 14: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{9 a}$.

Fig. S 15: ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ spectrum $\left(108 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $9 \mathbf{9}$.

Fig. S 16: ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of complex $9 \mathbf{a}$.

Fig. S 17: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{9 b}$.

Fig. S 18: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{9 b}$.

Fig. S 19: ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ spectrum $\left(108 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $9 \mathbf{9 b}$.

Fig. S 20: ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{9 b}$.

Fig. S 21: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of complex 9 c.

Fig. S 22: ${ }^{13} \mathrm{C}$-NMR spectrum $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $9 \mathbf{c}$.

Fig. S 23: ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ spectrum $\left(108 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $9 \mathbf{9}$.

Fig. S 24: ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $9 \mathbf{9 c}$.

Fig. S 25: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of complex 9 d.

Fig. S 26: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex 9 d .

Fig. S 27: ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ spectrum $\left(108 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex 9 d .

Fig. S 28: ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex 9 d.

Fig. S 29: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{1 0 a}$.

Fig. S 30: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{1 0 a}$.

Fig. S 31: ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ spectrum $\left(108 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{1 0 a}$.

Fig. S 32: ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{1 0 a}$.

Fig. \mathbf{S} 33: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of complex $\mathbf{1 0 b}$.

Fig. S 34: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{1 0 b}$.

Fig. S 35: ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ spectrum $\left(108 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{1 0 b}$.

Fig. S 36: ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of complex 10b.

Fig. S 37: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of complex $\mathbf{1 0 c}$.

Fig. S 38: ${ }^{13} \mathrm{C}$-NMR spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of complex $\mathbf{1 0 c}$.

Fig. S 39: ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ spectrum $\left(108 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of complex $\mathbf{1 0 c}$.

Fig. S 40: ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of complex $\mathbf{1 0 c}$.

Table S 41. Cellular accumulation of cisplatin and tested complexes in HCT116 cells. ${ }^{\text {a }}$

Compound	pmolPt/ 10^{6} cells
CDDP	49 ± 3
8a	67 ± 5
8b	88 ± 12
8c	97 ± 2
9a	122 ± 21
9b	245 ± 18
9c	316 ± 22
9d	59 ± 4
10a	520 ± 27
10b	555 ± 21
10c	592 ± 59

${ }^{\text {a }}$ Cellular accumulation of Pt from tested compounds ($8 \mu \mathrm{M}$ in media) in HCT116 cells after 5 h of treatment. Each value in the table is in pmol $\mathrm{Pt} / 10^{6}$ cells. The results are expressed as the mean $\pm \mathrm{SD}$ of three independent experiments.

Table S 3. Binding of $\mathbf{8 c}, \mathbf{9 c}, 10 a-\mathbf{c}$ to synthetic polydeoxyribonucleotides determined by FAAS.

	8c	9c	10a	10b	10c
poly (dA)	35%	40%	22%	20%	15%
poly (dC)	5%	3%	1%	1%	2%
poly (dG)	75%	82%	55%	52%	49%
poly (dT)	0.1%	0%	0.3%	0.1%	0.5%

Binding (\%) was calculated as a ratio of Pt associated with the polydeoxyribonucleotides after dialysis to the total amount of Pt present in the sample, multiplied by 100 .

Fig. S 41. $\Delta \mathrm{T}_{\mathrm{m}}$ values of ct DNA modified by CDDP, 8c, $\mathbf{9 c}$ and $\mathbf{1 0 a} \mathbf{c}$ at $\mathrm{r}_{\mathrm{b}}=0.03$ measured in 0.01 M (left) or 0.1 M (right) NaClO 4 plus 1 mM Tris/Cl with 0.1 mM EDTA, $\mathrm{pH} 7.4 . \Delta \mathrm{T}_{\mathrm{m}}$ is defined as the difference between the T_{m} values of platinated and nonmodified DNA. Data represent a mean \pm SEM from two independent experiments.

Fig. S 42. Changes in the relative fluorescence of Tb^{3+} ion bound to double-helical ctDNA modified by $\mathrm{Pt}^{\text {complexes }} \mathrm{at}_{\mathrm{r}}=0.03$. Tb^{3+} ion fluorescence of untreated DNA was arbitrarily set at 1 . Values shown in the graph are the means (\pm SEM) of at least two independent measurements.

Fig. S 43. Unwinding of supercoiled pSP73 plasmid DNA by $\operatorname{CDDP}(A), \mathbf{8 c}(B), \mathbf{9 c}(C), \mathbf{1 0 a}(D, \mathbf{1 0 b}(E)$ and $\mathbf{1 0 c}(F)$. The top bands correspond to the form of nicked plasmid (oc) and the bottom bands to the closed, negatively supercoiled plasmid (sc). A) lanes: 1 and 12 , control, nonplatinated DNA; $2, r_{b}=0.005 ; 3, r_{b}=0.01 ; 4, r_{b}=0.02 ; 5, r_{b}=0.03 ; 6, r_{b}=0.04 ; 7, r_{b}=0.05 ; 8, r_{b}=0.06 ; 9, r_{b}=0.07 ; 10, r_{b}=0.08 ; 11$, $r_{b}=0.09$. B) lanes: 1 and 12 , control, nonplatinated DNA; 2, $r_{b}=0.03 ; 3, r_{b}=0.04 ; 4, r_{b}=0.05 ; 5, r_{b}=0.056 ; 6, r_{b}=0.06 ; 7, r_{b}=0.07 ; 8, r_{b}=0.077 ; 9, r_{b}=0.084 ; 10, r_{b}=0.09 ; 11, r_{b}=0.1 . C_{\text {) }}$ lanes: 1 and 12, control, nonplatinated DNA; $2, r_{b}=0.055 ; 3, r_{b}=0.06 ; 4, r_{b}=0.064 ; 5, r_{b}=0.07 ; 6, r_{b}=0.073 ; 7, r_{b}=0.078 ; 8, r_{b}=0.085 ; 9, r_{b}=0.09 ; 10$, $r_{b}=0.096 ; 11, r_{b}=0.1$. D) lanes: 1 and 12 , control, nonplatinated DNA; $2, r_{b}=0.052 ; 3, r_{b}=0.06 ; 4, r_{b}=0.07 ; 5, r_{b}=0.074 ; 6, r_{b}=0.08 ; 7, r_{b}=0.085 ; 8$, $r_{b}=0.093 ; 9, r_{b}=0.1 ; 10, r_{b}=0.11 ; 11, r_{b}=0.12$. E) lanes: 1 and 12 , control, nonplatinated DNA; $2, r_{b}=0.04 ; 3, r_{b}=0.05 ; 4, r_{b}=0.058 ; 5, r_{b}=0.065 ; 6$, $r_{b}=0.075 ; 7, r_{b}=0.08 ; 8, r_{b}=0.087 ; 9, r_{b}=0.091 ; 10, r_{b}=0.1 ; 11, r_{b}=0.11$. F) lanes: 1 and 12 , control, nonplatinated $D N A ; 2, r_{b}=0.045 ; 3, r_{b}=0.052 ; 4$, $r_{b}=0.054 ; 5, r_{b}=0.06 ; 6, r_{b}=0.065 ; 7, r_{b}=0.07 ; 8, r_{b}=0.079 ; 9, r_{b}=0.085 ; 10, r_{b}=0.1 ; 11, r_{b}=0.11$.

Fig. S 44: Effects of $\mathbf{8 c}(10 \mu \mathrm{M}), \mathbf{9 c}(1 \mu \mathrm{M}), \mathbf{1 0 c}(1 \mu \mathrm{M}), \mathbf{C D D P}(10 \mu \mathrm{M})$ on the progression of the cell cycle of HCT116 p53 ${ }^{-/-}$colon carcinoma cells after 24 h of treatment in comparison to untreated cells (vehicle control). The bars represent the percentages of cells in each phase of the cell cycle (G1, S and G2/M) and dead cells (sub-G1). Analysis was done via propidium iodide staining and flow cytometry, values represent means \pm SDs of three experiments.

References

[1] R. Rubbiani, I. Ott et al., J. Med. Chem., 2010, 53, 8608-8618, DOI: 10.1021/jm100801e.
[2] H. Valdés, M. Poyatos, G. Ujaque, E. Peris, Chem. Eur. J., 2015, 21, 1578 - 1588, DOI: 10.1002/chem. 201404618.
[3] H. Lu and R. L. Brutchey, Chem. Mater., 2017, 29, 1396-1403, DOI: 10.1021/acs.chemmater.6b05293.

[^0]: ${ }^{a}$ Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany. E-mail: Rainer.Schobert@uni-bayreuth.de
 ${ }^{\text {b }}$ Lehrstuhl fuer Anorganische Chemie II, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany.
 ${ }^{c}$ Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic. E-mail: jana@ibp.cz

[^1]: *shared corresponding authors.

