Electronic Supporting Information

N,N-Dialkylbenzimidazol-2-ylidene platinum complexes – effects of alkyl residues and ancillary *cis*-ligands on their anticancer activity

Tobias Rehm,^a Matthias Rothemund,^a Alexander Bär,^a Thomas Dietel,^b Rhett Kempe,^b Hana Kostrhunova,^c Viktor Brabec,^c Jana Kasparkova,^{*c} and Rainer Schobert^{*a}

^aOrganic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany. E-mail: Rainer.Schobert@uni-bayreuth.de

^b Lehrstuhl fuer Anorganische Chemie II, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany. ^c Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic. *E-mail: jana@ibp.cz*

Table of content:

General information	S1
Synthesis and characterization of benzimidazolium chlorides	S2
X-ray structural data of complexes 8b, 9c and 10a (Table S1)	S3
NMR spectra of complexes 8a-d , 9a-d and 10a-c (Fig. S1-S40)	S4
Values of cellular accumulation of complexes 8c, 9a-d, 10c and CDDP (Table S2)	S25
Sequence preferences of complexes 8c, 9c and 10a-c (Table S3)	S25
Influence of complexes 8c, 9c, 10a-c and CDDP on the melting point of ct DNA (Fig. S41)	S25
Influence of complexes 8c, 9c, 10a-c and CDDP on the relative Tb ³⁺ ion fluorescence (Fig. S42)	S26
Unwinding of negatively supercoiled pSP73 plasmid DNA by 8c, 9c, 10a-c and CDDP (Fig. S43)	S26
Cell cycle analysis of complexes 8c, 9c and 10c in HCT116 ^{-/-} cells(Fig. S44)	S27
References	S27

*shared corresponding authors.

General information

All the chemicals and reagents were purchased from Sigma Aldrich, Alfa Aesar, ChemPur or ABCR and were used without further purification. Melting points are uncorrected; NMR spectra were run on a 500 MHz spectrometer; chemical shifts are given in ppm (δ) and referenced relative to the internal solvent signal; ¹⁹⁵Pt NMR shifts are quoted relative to $\Xi(^{195}Pt) = 21.496784 \text{ MHz}$, K_2PtCl_4 was used as external standard ($\delta = -1612.81$); mass spectra: direct inlet, EI, 70 eV; elemental analyses: Vario EL III elemental analyser; X-Ray Diffractometer: STOE-IPDS II. Synthesis of benzimidazolium salts was performed based on literature procedures¹⁻³ as described herein.

Synthesis and characterization of benzimidazolium chlorides 6

General procedure:

Benzimidazole (1eq) and the respective alkyl iodides or bromides (5 - 10 eq) in acetonitrile (10 mL/mmol) were treated with K_2CO_3 (1.5 eq) and the mixture was heated to 50 - 70 °C for 1-5 days. After filtration the solvent was evaporated in vacuo and the residue was crystalized from CH_2Cl_2 and hexane.

The resulting benzimidazolium iodides/bromides were then stirred with Ag_2CO_3 (1eq) and conc. HNO₃ (kat.) in Ethanol for 3 h and after filtration of the silver halides the solution was treated with conc. HCl to obtain the respective benzimidazolium chlorides. After neutralization with NaHCO₃ and further filtration the solvent was evaporated, and the solids were resuspended in CH_2Cl_2 to filter off all inorganic residues. The product was then crystalized by adding hexane.

Synthesis of 1,3-dimethylbenzimidazolium chloride:1

Benzimidazole (472 mg, 4.0 mmol), iodomethane (2.48 mL, 40 mmol, 10 eq) and K_2CO_3 (828 mg, 6.0 mmol, 1.5 eq) in acetonitrile (40 mL) for 5 d at 50 °C gave 1.004 g (92 %) of the benzimidazolium iodide which was treated with Ag_2CO_3 (1.0 g, 3.7 mmol), conc. HNO₃ (100 µL) and conc. HCl (800 µL) in EtOH (80 mL). Yield: 632 mg (87 %) white solid; ¹H NMR (CDCl₃, 500 MHz): δ 4.21 (6 H, s) 7.67 - 7.71 (2 H, m) 7.71 - 7.76 (2 H, m) 10.75 (1 H, s).

Synthesis of 1,3-diethylbenzimidazolium chloride:1

Benzimidazole (500 mg, 4.2 mmol), iodoethane (1.26 mL, 21 mmol, 5 eq) and K_2CO_3 (871 mg, 6.3 mmol, 1.5 eq) in acetonitrile (40 mL) for 24 h at 70 °C gave 1.278 g (100 %) of the benzimidazolium iodide which was treated with Ag₂CO₃ (1.16 g, 4.2 mmol), conc. HNO₃ (100 µL) and conc. HCl (800 µL) in EtOH (80 mL). Yield: 880 mg (100 %) white solid; ¹H NMR (CDCl₃, 500 MHz): δ 1.77 (6 H, t, *J* = 7.3 Hz) 4.70 (4 H, q, *J* = 7.3 Hz) 7.66 - 7.70 (2 H, m) 7.75 - 7.79 (2 H, m) 11.08 (1 H, s).

Synthesis of 1,3-dibutylbenzimidazolium chloride:²

Benzimidazole (2.0 g, 17 mmol), 1-bromobutane (7.2 mL, 68 mmol, 4 eq) and K_2CO_3 (3.5 g, 26 mmol, 1.5 eq) in acetonitrile (150 mL) for 5 d at 70 °C gave 3.635 g (69 %) of the benzimidazolium bromide which was treated with Ag₂CO₃ (3.22 g, 12 mmol), conc. HNO₃ (100 µL) and conc. HCl (800 µL) in EtOH (100 mL). Yield: 2.849 mg (63 %) amber solid; ¹H NMR (CDCl₃, 500 MHz): δ 0.98 (6 H, t, *J* = 7.5 Hz) 1.44 (4 H, sxt, *J* = 7.5 Hz) 2.02 (4 H, quin, *J* = 7.5 Hz) 4.59 (4 H, t, *J* = 7.5 Hz) 7.64 - 7.68 (2 H, m) 7.70 - 7.74 (2 H, m) 11.46 (1 H, s).

Synthesis of 1,3-dioctylbenzimidazolium chloride:³

Benzimidazole (236 mg, 2.0 mmol), 1-bromooctane (1.74 mL, 10 mmol, 5 eq) and K₂CO₃ (414 mg, 3.0 mmol, 1.5 eq) in acetonitrile (20 mL) for 3 d at 70 °C gave 461 mg (54 %) of the benzimidazolium bromide which was treated with Ag₂CO₃ (300 mg, 1.1 mmol), conc. HNO₃ (30 μ L) and conc. HCl (200 μ L) in EtOH (20 mL). Yield: 398 mg (52 %) white solid; ¹H NMR (CDCl₃, 500 MHz): δ 0.84 - 0.89 (6 H, m) 1.20 - 1.40 (20 H, m) 2.01 (4 H, quin, *J* = 7.5 Hz) 4.54 (4 H, t, *J* = 7.5 Hz) 7.64 - 7.69 (2 H, m) 7.69 - 7.75 (2 H, m) 11.05 (1 H, s).

Crystal data	8b	9c	10a	
Chemical formula	C ₁₃ H ₂₀ Cl ₂ N ₂ OPtS	$C_{33}H_{37}CI_2N_2PPt$	C45H40CIN2P2Pt·CI	
Mr	518.36 1517.27		936.72	
Crystal system, space group	Triclinic, <i>P</i> ⁻¹	Triclinic, P ⁻¹	Monoclinic, P21/c	
Temperature (K)	133	133	133	
<i>a, b, c</i> (Å)	8.675 (5), 9.264 (5), 10.601 (5)	9.1067 (18), 12.792 (3), 13.803 (3)	12.578 (5), 10.790 (5), 32.126 (5	
α, β, γ (°)	91.874 (5), 103.182 (5), 94.722 (5)	88.02 (3), 87.59 (3), 71.06 (3)	90, 94.531 (5), 90	
<i>V</i> (Å ³)	825.5 (8)	1519.2 (6)	4346 (3)	
Z	2	1	4	
<i>F</i> (000)	496	752	1864	
<i>D</i> _x (Mg m ⁻³)	2085	1.658	1431	
Radiation type	Μο Κα	Μο <i>Κ</i> α	Μο <i>Κ</i> α	
No. of reflections for cell measurement	9824	31963	16101	
$\boldsymbol{\theta}$ range (°) for cell measurement	2.0–28.5	1.5–30.1	1.6–27.7	
μ (mm ⁻¹)	8.95	4.87	3.46	
Crystal shape	Needles	Block	Platte	
Colour	Colourless	Colourless	Colourless	
Crystal size (mm)	0.11 × 0.08 × 0.07	0.36 × 0.19 × 0.15	$0.20 \times 0.09 \times 0.08$	
Data collection				
Diffractometer	STOE-STADIVARI	STOE-STADIVARI	STOE-STADIVARI	
Scan method	ω–scan	ω–scan	ω-scan	
Absorption correction	Numerical	Numerical	Numerical	
Absolption conection	STOE X-RED32	STOE X-RED32	SROE X-RED32	
T_{\min}, T_{\max}	0.680, 0.761	0.553, 0.719	0.863, 0.953	
No. of measured, independent and observed [$l > 2\sigma(l)$] reflections	7449, 3177, 2704	21191, 5907, 5605	32457, 8450, 5359	
R_{int}	0.042	0.022	0.104	
θ values (°)	θ_{max} = 26.0, θ_{min} = 2.0	θmax = 26.0, θmin = 1.5	θmax = 26.0, θmin = 1.6	
(sin θ/λ) _{max} (Å-1)	0.617	0.617	0.617	
	$h = -9 \rightarrow 10$	h = −5 → 11	h = −15 → 8	
Range of <i>h</i> , <i>k</i> , <i>l</i>	$k = -11 \rightarrow 9$	k = −15 → 15	$k = -13 \rightarrow 13$	
	<i>I</i> = −13 → 11	I = −16 → 17	I = −39 → 37	
Refinement				
Refinement on	F ²	F ²	F^2	

Table S 1: X-ray structural data of platinum carbene complexes 8b, 9c and 10a.

S3

Fig. S1: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 8a.

Fig. S 2: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 8a.

Fig. S 3: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex 8a.

Fig. S 4: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 8b.

Fig. S 5: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 8b.

Fig. S 6: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex 8b.

Fig. S 7: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 8c.

Fig. S 8: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 8c.

Fig. S 9: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex 8c.

Fig. S 10: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 8d.

Fig. S 11: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 8d.

Fig. S 12: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex 8d.

Fig. S 13: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 9a.

Fig. S 14: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 9a.

Fig. S 15: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex 9a.

Fig. S 16: ³¹P-NMR spectrum (202 MHz, CDCl₃) of complex 9a.

Fig. S 17: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 9b.

Fig. S 18: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 9b.

Fig. S 19: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex 9b.

Fig. S 20: ³¹P-NMR spectrum (202 MHz, CDCl₃) of complex 9b.

Fig. S 21: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 9c.

Fig. S 22: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 9c.

Fig. S 23: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex 9c.

Fig. S 24: ³¹P-NMR spectrum (202 MHz, CDCl₃) of complex 9c.

Fig. S 25: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 9d.

Fig. S 26: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 9d.

Fig. S 27: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex 9d.

Fig. S 28: ³¹P-NMR spectrum (202 MHz, CDCl₃) of complex 9d.

Fig. S 29: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 10a.

Fig. S 30: $^{\rm 13}\text{C-NMR}$ spectrum (126 MHz, CDCl₃) of complex 10a.

Fig. S 31: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex 10a.

Fig. S 32: ³¹P-NMR spectrum (202 MHz, CDCl₃) of complex 10a.

Fig. S 33: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 10b.

Fig. S 34: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 10b.

Fig. S 35: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex 10b.

Fig. S 36: $^{31}\text{P-NMR}$ spectrum (202 MHz, CDCl₃) of complex 10b.

Fig. S 37: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 10c.

Fig. S 38: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 10c.

Fig. S 40: ³¹P-NMR spectrum (202 MHz, CDCl₃) of complex 10c.

Fable S 41. Cellular accumulation of ci	splatin and tested com	plexes in HCT116 cells. ^a
---	------------------------	--------------------------------------

Compound	pmolPt/10 ⁶ cells	
CDDP	49 ± 3	
8a	67 ± 5	
8b	88 ± 12	
8c	97 ± 2	
9a	122 ± 21	
9b	245 ± 18	
9c	316 ± 22	
9d	59 ± 4	
10a	520 ± 27	
10b	555 ± 21	
10c	592 ± 59	

^aCellular accumulation of Pt from tested compounds (8 μ M in media) in HCT116 cells after 5 h of treatment. Each value in the table is in pmol Pt/10⁶ cells. The results are expressed as the mean \pm SD of three independent experiments.

Table S 3. Binding of 8c, 9c, 10a-c to synthetic polydeoxyribonucleotides determined by FAAS.

	8c	9c	10a	10b	10c
poly (dA)	35%	40%	22%	20%	15%
poly (dC)	5%	3%	1%	1%	2%
poly (dG)	75%	82%	55%	52%	49%
poly (dT)	0.1%	0%	0.3%	0.1%	0.5%

Binding (%) was calculated as a ratio of Pt associated with the polydeoxyribonucleotides after dialysis to the total amount of Pt present in the sample, multiplied by 100.

Fig. S 41. ΔT_m values of ct DNA modified by CDDP, 8c, 9c and 10a-c at $r_b = 0.03$ measured in 0.01 M (left) or 0.1 M (right) NaClO₄ plus 1 mM Tris/Cl with 0.1 mM EDTA, pH 7.4. ΔT_m is defined as the difference between the T_m values of platinated and nonmodified DNA. Data represent a mean \pm SEM from two independent experiments.

Fig. S 42. Changes in the relative fluorescence of Tb^{3+} ion bound to double-helical ctDNA modified by Pt complexes at $r_b = 0.03$. Tb^{3+} ion fluorescence of untreated DNA was arbitrarily set at 1. Values shown in the graph are the means (\pm SEM) of at least two independent measurements.

Fig. S 43. Unwinding of supercoiled pSP73 plasmid DNA by CDDP (A), **8c** (B), **9c** (C), **10a** (D, **10b** (E) and **10c** (F). The top bands correspond to the form of nicked plasmid (oc) and the bottom bands to the closed, negatively supercoiled plasmid (sc). A) lanes: 1 and 12, control, nonplatinated DNA; 2, $r_{b}= 0.005$; 3, $r_{b}= 0.01$; 4, $r_{b}= 0.02$; 5, $r_{b}= 0.03$; 6, $r_{b}= 0.04$; 7, $r_{b}= 0.05$; 8, $r_{b}= 0.06$; 9, $r_{b}= 0.07$; 10, $r_{b}= 0.08$; 11, $r_{b}= 0.09$. B) lanes: 1 and 12, control, nonplatinated DNA; 2, $r_{b}= 0.03$; 3, $r_{b}= 0.04$; 7, $r_{b}= 0.05$; 6, $r_{b}= 0.06$; 7, $r_{b}= 0.07$; 8, $r_{b}= 0.077$; 9, $r_{b}= 0.084$; 10, $r_{b}= 0.09$; 11, $r_{b}= 0.1$. C) lanes: 1 and 12, control, nonplatinated DNA; 2, $r_{b}= 0.05$; 3, $r_{b}= 0.06$; 4, $r_{b}= 0.064$; 5, $r_{b}= 0.07$; 6, $r_{b}= 0.073$; 7, $r_{b}= 0.078$; 8, $r_{b}= 0.085$; 9, $r_{b}= 0.09$; 10, $r_{b}= 0.096$; 11, $r_{b}= 0.1$. D) lanes: 1 and 12, control, nonplatinated DNA; 2, $r_{b}= 0.055$; 3, $r_{b}= 0.066$; 4, $r_{b}= 0.066$; 4, $r_{b}= 0.073$; 7, $r_{b}= 0.074$; 6, $r_{b}= 0.085$; 9, $r_{b}= 0.095$; 10, $r_{b}= 0.096$; 11, $r_{b}= 0.1$. D) lanes: 1 and 12, control, nonplatinated DNA; 2, $r_{b}= 0.073$; 9, $r_{b}= 0.074$; 6, $r_{b}= 0.085$; 9, $r_{b}= 0.095$; 10, $r_{b}= 0.093$; 9, $r_{b}= 0.1$; 10, $r_{b}= 0.12$. E) lanes: 1 and 12, control, nonplatinated DNA; 2, $r_{b}= 0.045$; 3, $r_{b}= 0.065$; 6, $r_{b}= 0.075$; 7, $r_{b}= 0.085$; 8, $r_{b}= 0.091$; 10, $r_{b}= 0.1$; 11, $r_{b}= 0.11$; 11, $r_{b}= 0.12$. E) lanes: 1 and 12, control, nonplatinated DNA; 2, $r_{b}= 0.045$; 3, $r_{b}= 0.045$; 5, $r_{b}= 0.045$; 6, $r_{b}= 0.075$; 7, $r_{b}= 0.085$; 8, $r_{b}= 0.091$; 10, $r_{b}= 0.1$; 11, $r_{b}= 0.11$. F) lanes: 1 and 12, control, nonplatinated DNA; 2, $r_{b}= 0.045$; 3, $r_{b}= 0.045$; 3, $r_{b}= 0.052$; 4, $r_{b}= 0.054$; 5, $r_{b}= 0.065$; 6, $r_{b}= 0.045$; 7, $r_{b}= 0.052$; 4, $r_{b}= 0.054$;

Fig. S 44: Effects of **8c** (10 μ M), **9c** (1 μ M), **10c** (1 μ M), **CDDP** (10 μ M) on the progression of the cell cycle of HCT116 p53^{-/-} colon carcinoma cells after 24 h of treatment in comparison to untreated cells (vehicle control). The bars represent the percentages of cells in each phase of the cell cycle (G1, S and G2/M) and dead cells (sub-G1). Analysis was done via propidium iodide staining and flow cytometry, values represent means \pm SDs of three experiments.

References

- [1] R. Rubbiani, I. Ott *et al., J. Med. Chem.*, 2010, **53**, 8608–8618, DOI: 10.1021/jm100801e.
- [2] H. Valdés, M. Poyatos, G. Ujaque, E. Peris, Chem. Eur. J., 2015, 21, 1578 1588, DOI: 10.1002/chem.201404618.
- [3] H. Lu and R. L. Brutchey, *Chem. Mater.*, 2017, **29**, 1396–1403, DOI: 10.1021/acs.chemmater.6b05293.