Supporting information

PolynuclearCu(I)andAg(I)PhosphineComplexesContainingmulti-dentatepolytopicligands:Synthesis,CrystalStructuresandPhotoluminescence

Properties

Jing Xiang,^{a,*} Shun-Cheung Cheng,^b Xin-Xin Jin,^a Qian-Qian Su,^a Xin Zhou,^a Wing-Kin Chu,^{b,} Chi-Fai Leung,^{c,*} and Chi-Chiu Ko^{b,*}

^a College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China. Email:

xiangjing@yangtzeu.edu.cn

^b Department of Chemistry, Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China

^c Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong, China

Table of supporting information

	Experimental section	3
Figure S1	¹ H NMR spectroscopy of 1	4
Figure S2	³¹ P{ ¹ H} NMR spectroscopy of 1 .	4
Figure S3	The $\pi \cdots \pi$ stacking interactions in 1 (a), 2(b), 3(c) and 4 (d).	5
Figure S4	UV spectra of ligands L^1 , H_2L^2 and H_3L^3 in MeCN.	5
Figure S5	The emission spectra of compounds ${\bf 1}$ and ${\bf 3}$ in CH_2Cl_2 (λ_{ex} = 400 nm)	5
Figure S6	Emission spectra of ${f 3}$ in the solid state (a) and in 77 K EtOH-MeOH (4:1, v/v) glassy state	6
	(b).	
Figure S7	Emission spectra of ${\bf 6}$ in the solid state (a) and in 77 K EtOH-MeOH (4:1, v/v) glassy state	6
	(b).	
Table S1	Predicted transition energies and the changes in the electron densities of the lowest 10	7
	vertical transitions of compound 1.	
Table S2	Predicted transition energies and the changes in the electron densities of the lowest 10	8
	vertical transitions of compound 3 .	
Table S3	Predicted transition energies and the changes in the electron densities of the lowest 10	9
	vertical transitions of compound 4.	
Table S4	Predicted transition energies and the changes in the electron densities of the lowest 10	10
	vertical transitions of compound 5.	
Table S5	Predicted transition energies and the changes in the electron densities of the lowest 10	11
	vertical transitions of compound 6 .	
Figure S8.	Overlaid experimental (black) and predicted (red) electronic absorption spectra of ${f 3}$ - ${f 6}$ in	12
	dichloromethane. The predicted vertical transitions were shown as red vertical bars with	
	height equal to their calculated oscillator strengths.	

Experimental section

Physical Measurements and Instrumentation. ¹H NMR and ³¹P{¹H} NMR spectra were recorded on a Bruker AV300 (300 MHz) FT-NMR spectrometer. Chemical shifts (δ , ppm) are reported relative to tetramethylsilane (Me₄Si). Elemental analysis was performed on an ElementarVario MICRO Cube elemental analyzer. IR spectra of the solid samples as KBr discs were obtained within the range 4000–400 cm⁻¹ on an AVATAR 360 FTIR spectrometer. All of the electronic absorption spectra were recorded on a Hewlett–Packard 8453 or Hewlett–Packard 8452A diode-array spectrophotometer. Steady-state emission spectra were measured at room temperature and at 77 K on a Horiba JobinYvon Fluorolog-3-TCSPC spectrofluorometer. The solutions were rigorously degassed on a high-vacuum line in a two-compartment cell with not less than four successive freeze–pump–thaw cycles. The measurements at 77 K were carried out on dilute solutions of the samples in EtOH/MeOH (4:1, v/v) loaded in a quartz tube inside a quartz-walled Dewar flask that contained liquid nitrogen. Luminescence lifetimes were measured by using the time-correlated single-photon-counting (TCSPC) technique on a Fluorolog-3-TCSPC spectrofluorometer in a fast MCS mode with a Nano LED-375 LH excitation source, which had a peak excitation wavelength at 375 nm and a pulse width of less than 750 ps. The photon-counting data were analyzed on Horiba JobinYvon Decay Analysis Software.

X-ray Crystallography. The crystal structures were determined on an Oxford Diffraction Gemini S Ultra X-ray single-crystal diffractometer using graphite-monochromated Cu K_a radiation ($\lambda = 1.5417$ Å). The structures were solved by using direct methods with the SHELXS-97 program.¹ The Cu, Ag metal atoms and many of the non-hydrogen atoms were located according to the direct methods. The positions of the other non-hydrogen atoms were located after refinement by full matrix least-squares by using the SHELXL-97 program.² In the final stage of the least-squares refinement, all non-hydrogen atoms were refined anisotropically. H atoms were generated by SHELXL-97 program. The positions of H atoms were calculated based on riding model with thermal parameters that were 1.2 times that of the associated C atoms and participated in the calculation of the final R indices. Crystallographic data (including structure factors) of the structures reported in this paper have been deposited to the Cambridge Crystallographic Data Centre (CCDC) with the depository numbers CCDC 1577074-1577079.

Computational Details. All the calculations were done by GAUSSIAN 09, version B.01.³ The ground state and lowest triplet state structures of complexes 1 - 6 were optimized using B3LYP functional⁴ and a mixed basis set of 6-31+G(d) (for C, H, N, P) and LANL2DZ⁵ (for Cu and Ag). To reduce computation complexity, the phenyl rings of the triphenylphosphine ligands are replaced by methyl groups. Polarized Continuum Model⁶ (PCM) was employed to account for the solvent effect of dichloromethane. Frequency calculations were done after optimization and no imaginary frequencies were found. The vertical electronic transitions of 1, 3 - 6 were calculated by time-dependent density functional theory.⁷ The X-ray crystal structures of the complexes were used without further optimization.

Reference:

- (1) G. M. Sheldrick, SHELX-97: Programs for Crystal Structure Analysis, release 97-2, University of Gottingen, Germany, 1997.
- (2) A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. Burla, G. Polidori and M. Camalli, J. Appl. Crystallogr., 1994, 27, 435.
- (3) M. J. Frisch, G. W. Trucks, H. B. Schlegel *et al., Gaussian 09*, Revision B.01, Gaussian, Inc., Wallingford CT, 2009
- (4) (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; (b) C. Lee, W, Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785; (c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623-11627.
- (5) (a) Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241; (b) A. Schäfer, H. Horn and R. Ahlrichs, *J. Chem. Phys.* 1992, **97**, 2571–2577; (c) W. R. Wadt and P. J. Hay, J. Chem. Phys. 1985, 82, 284–298.
- (6) G. Scalmani and M. J. Frisch, J. Chem. Phys. 2010, 132, 114110.
- (7) (a) R. Bauernschmitt, R. Ahlrichs, *Chem. Phys. Lett.*, 1996, **256**, 454-64; (b) G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, V. Barone, *J. Chem. Phys.*, 2006, **124**, 094107.

Figure S2. ³¹P{¹H} NMR spectroscopy of 1.

Figure S3. The $\pi \cdots \pi$ stacking interactions in **1** (a), **2**(b), **3**(c) and **4** (d).

Figure S4. UV spectra of ligands $L^1,\,H_2L^2$ and H_3L^3 in MeCN.

Figure S5. The emission spectra of compounds 1 and 3 in CH_2Cl_2 (λ_{ex} = 400 nm).

Figure S6. Emission spectra of **3** (a) in solid state and (b) in 77 K EtOH – MeOH (4:1, v/v) glassy state.

Figure S7. Emission spectra of **6** (a) in solid state and (b) in 77 K EtOH – MeOH (4:1, v/v) glassy state.

Table S1 – **S5.** Calculated transition energies and the changes in the electron densities of the lowest 10 vertical transitions of **1** and **3** – **6**.

λ_{calc} / nm	Changes of the electron density (%	Transition Characters
(Oscillator	contribution; H:HOMO, L:LUMO)	
Strength)		
480.25	H→L (96.4%)	MLCT[d(Cu) $\rightarrow \pi^*(L^1)$]
(0.2049)		
455.49	H-2→L (4.9%), H-1→L (85.1%) , H→L+1 (4.7%)	MLCT[d(Cu) $\rightarrow \pi^*(\mathbf{L}^1)$]
(0.0135)		
439.50	H-1 → L (3.6%), H→L+1 (93.2%)	MLCT[d(Cu) $\rightarrow \pi^*(\mathbf{L}^1)$]
(0.0067)		
429.77	H-4→L (2.8%), H-2→L (82.9%) , H-1→L (5.5%)	MLCT[d(Cu) $\rightarrow \pi^*(L^1)$]
(0.0189)		
424.68	H-1→L+1 (94.9%)	MLCT[d(Cu) $\rightarrow \pi^*(\mathbf{L}^1)$]
(0.0019)		
415.97	H-3→L (87.5%) , H-3→L+1 (2.8%)	MLCT[d(Cu) $\rightarrow \pi^*(\mathbf{L}^1)$]
(0.0054)		
411.70	H-4→L (85.5%) , H-2→L (2.4%)	MLCT[d(Cu) $\rightarrow \pi^*(\mathbf{L}^1)$]
(0.0256)		
399.28	H-9→L (5.2%), H-7→L (21.4%), H-5→L	MLCT[d(Cu) $\rightarrow \pi^*(\mathbf{L}^1)$]
(0.0023)	(56.2%) , H-4→L+1 (5.6%)	
386.48	H-2→L (2.4%), H-2→L+1 (92.0%)	$MLCT[d(Cu) \rightarrow \pi^*(\mathbf{L}^1)]$
(0.0014)		
374.82	H-5→L+1 (2.7%), H-3→L (3.4%), H-3→L+1	MLCT[d(Cu) $\rightarrow \pi^*(\mathbf{L}^1)$]
(0.0001)	(89.0%)	

Table S1. For compound 1

Table S2. For compound 3

λ _{calc} / nm (Oscillator Strength)	Changes of the electron density (% contribution; H:HOMO,L:LUMO)	Transition Characters
344.2 nm	H-1→L+1 (7.9%), H→L (2.2%), H→L+1 (83.0%)	LLCT[$\pi(\mathbf{L}^3) \rightarrow \pi^*(PPh_3)$] +
(0.0037)		$MLCT[d(Cu) \rightarrow \pi^*(PPh_3)]$
343.0 nm	H-2→L (2.1%), H-1→L (31.5%), H→L (61.2%) ,	LLCT[$\pi(\mathbf{L}^3) \rightarrow \pi^*(PPh_3)$] +
(0.0070)	H→L+1 (2.5%)	MLCT[d(Cu) $\rightarrow \pi^*$ (PPh ₃)]
331.9 nm	H-2→L+1 (14.3%), H-1→L+1 (38.0%) , H-	MLCT[d(Cu) $\rightarrow \pi^*(PPh_3)$] +
(0.0055)	1→L+2 (2.1%), H→L (26.3%) , H→L+2 (3.0%), H→L+3 (6.0%)	$LLCT[\pi(\mathbf{L}^3) \rightarrow \pi^*(PPh_3)]$
330.5 nm	$H-2 \rightarrow L(2,3\%), H-1 \rightarrow L(2,7\%), H-1 \rightarrow L+3$	$[CT[\pi(L^3) \rightarrow \pi^*(PPh_2)] +$
(0.0045)	(3.1%) , $H \rightarrow I$ (2.9%), $H \rightarrow I + 2$ (5.9%), $H \rightarrow I + 3$	$MICT[d(Cu) \rightarrow \pi^*(PPh_2)]$
(0.00.0)	(29.8%), H→L+4 (25.2%), H→L+6 (16.0%)	
324.1 nm	H-2→L+2 (7.3%), H-1→L (7.5%), H-1→L+2	LLCT[$\pi(L^3) \rightarrow \pi^*(PPh_3)$] +
(0.0227)	(6.7%), H-1→L+4 (3.1%), H→L (4.4%), H→L+2	$MLCT[d(Cu) \rightarrow \pi^*(PPh_3)]$
	(57.5%) , H→L+3 (2.8%)	
321.6 nm	H-2→L (2.3%), H-1→L (2.7%), H-1→L+3	LLCT[$\pi(\mathbf{L}^3) \rightarrow \pi^*(PPh_3)$] +
(0.0087)	(3.1%), H→L (2.9%), H→L+2 (5.9%), H→L+3	$MLCT[d(Cu) \rightarrow \pi^*(PPh_3)]$
	(29.8%), H→L+4 (25.2%), H→L+6 (16.0%)	
321.2 nm	H-1→L+8 (5.6%), H→L+5 (8.9%), H→L+6	LLCT[$\pi(L^3) \rightarrow \pi^*(PPh_3)$] +
(0.0041)	(10.6%), H→L+7 (49.3%) , H→L+8 (12.1%)	$MLCT[d(Cu) \rightarrow \pi^*(PPh_3)]$
319.5 nm	H-1→L+1 (4.5%), H-1→L+3 (2.3%), H-1→L+5	LLCT[π (L ³)→ π *(PPh ₃)] +
(0.0149)	(15.8%), H→L+3 (13.7%), H→L+5 (40.4%) ,	$MLCT[d(Cu) \rightarrow \pi^*(PPh_3)]$
	H→L+6 (3.6%), H→L+8 (5.0%), H→L+15 (2.3%)	
317.1 nm	H-2→L (34.9%) , H-2→L+2 (8.9%), H-2→L+4	$MLCT[d(Cu) \rightarrow \pi^*(PPh_3)] +$
(0.0022)	(2.1%), H-1→L (6.6%), H-1→L+5 (3.4%),	LLCT[$\pi(\mathbf{L}^3) \rightarrow \pi^*(PPh_3)$]
	H→L+2 (15.5%), H→L+3 (2.6%), H→L+6	
	(2.3%), H→L+7 (2.2%)	
315.9 nm	H-2→L (34.9%) , H-2→L+2 (8.9%), H-2→L+3	MLCT[d(Cu) $\rightarrow \pi^*(PPh_3)$] +
(0.0279)	(2.1%), H-2→L+6 (6.6%), H-1→L+1 (3.4%),	$LLCT[\pi(L^3) \rightarrow \pi^*(PPh_3)]$
	H→L+2 (15.5%), H→L+3 (2.6%), H→L+4	
	(2.3%), H→L+6 (2.2%), H→L+7 (2.2%), H→L+8	
	(2.2%), H→L+9 (2.2%), H→L+12 (2.2%),	
	H→L+15 (2.2%)	

Table S3. For compound 4

λ_{calc} / nm	Changes of the electron density (%	Transition Characters
(Oscillator	contribution; H:HOMO,L:LUMO)	
Strength)		
424.37 nm	H→L (98.9%)	MLCT[d(Ag) $\rightarrow \pi^*(L^1)$]
(0.0282)		
396.19 nm	H-1→L (84.3%), H-1→L+1 (7.4%), H→L+1	MLCT[d(Ag) $\rightarrow \pi^*(\mathbf{L}^1)$]
(0.0106)	(6.0%)	
393.41 nm	H-1→L (6.1%), H→L+1 (92.1%)	$MLCT[d(Ag) \rightarrow \pi^*(L^1)]$
(0.0015)		
388.13 nm	H-3→L (3.4%), H-2→L (89.3%)	MLCT[d(Ag) $\rightarrow \pi^*(\mathbf{L}^1)$]
(0.0339)		
380.35 nm	H-3→L (11.6%), H-2→L (3.0%), H-2→L+1	MLCT[d(Ag) $\rightarrow \pi^*(\mathbf{L}^1)$]
(0.0056)	(2.3%), H-1→L (5.4%), H-1→L+1 (75.3%)	
376.20 nm	H-3→L (70.3%), H-3→L+1 (3.4%), H-2→L	MLCT[d(Ag) $\rightarrow \pi^*(\mathbf{L}^1)$]
(0.0061)	(2.7%), H-2→L+1 (4.7%), H-1→L+1 (15.3%)	
365.57 nm	H-3→L (12.7%), H-3→L+1 (32.9%), H-2→L+1	MLCT[d(Ag) $\rightarrow \pi^*(\mathbf{L}^1)$]
(0.0011)	(51.4%)	
353.92 nm	H-3→L+1 (58.5%), H-2→L+1 (38.1%)	MLCT[d(Ag) $\rightarrow \pi^*(\mathbf{L}^1)$]
(0.0005)		
339.72 nm	H-9→L (3.4%), H-8→L (4.5%), H-4→L (83.5%)	LLCT[π (PPh ₃) $\rightarrow \pi^*$ (L ¹)]
(0.0173)		
326.13 nm	H-21→L (70.3%), H-20→L (3.4%), H-19→L	LLCT[π (PPh ₃) $\rightarrow \pi^*$ (L ¹)]
(0.0158)	(2.7%), H-18→L (4.7%), H-13→L (15.3%), H-	
	6→L (15.3%)	

Table S4. For compound 5

λ_{calc} / nm	Changes of the electron density (%	Transition Characters
(Oscillator	contribution; H:HOMO,L:LUMO)	
Strength)		
355.0 nm	H-1→L (5.8%), H→L (93.5%)	$MLCT[d(Ag) \rightarrow \pi^*(L^2)]$
(0.0212)		
348.2 nm	H-10→L (2.4%), H-9→L (2.3%), H-2→L (4.2%),	$MLCT[d(Ag) \rightarrow \pi^*(L^2)]$
(0.0056)	H-1→L (80.7%) , H→L (5.7%)	
330.7 nm	H-2→L (87.2%) , H-1→L (7.3%)	$MLCT[d(Ag) \rightarrow \pi^*(L^2)] +$
(0.0019)		$LLCT[\pi(PPh_3) \rightarrow \pi^*(L^2)]$
312.5 nm	H-29→L(2.0%), H-13→L (4.8%), H-11→L	$MLCT[d(Ag) \rightarrow \pi^*(L^2)] +$
(0.0050)	(9.7%), H-10→L (21.9%) , H-9→L (24.4%) , H -	LLCT[π (PPh ₃) $\rightarrow \pi^*$ (L ²)]
	3→L(16.4%) , H-2→L (7.5%), H-1→L (4.4%)	
304.5 nm	H-11→L (2.2%), H-10→L (6.2%), H-9→L	$MLCT[d(Ag) \rightarrow \pi^*(L^2)] +$
(0.0007)	(5.1%), H-3→L (81.5%)	$LLCT[\pi(PPh_3) \rightarrow \pi^*(L^2)]$
297.1 nm	H-4→L (2.8%), H-1→L+1 (5.9%), H→L+1	$MLCT[d(Ag) \rightarrow \pi^*(L^2)]$
(0.0049)	(88.7%)	
291.7 nm	H-6→L (2.1%), H-5→L (3.4%), H-4→L (47.4%) ,	IL[L ²] +
(0.0522)	H-1→L+1 (27.2%), H→L+1 (9.5%)	$LLCT[\pi(PPh_3) \rightarrow \pi^*(L^2)]$
291.3 nm	H-5→L (2.5%), H-4→L (33.2%), H-2→L+1	$MLCT[d(Ag) \rightarrow \pi^*(\mathbf{L}^2)]$
(0.0148)	(2.3%), H-1→L+1 (52.8%)	
285.0 nm	H-13→L (2.3%), H-6→L (3.4%), H-5→L	LLCT[π (PPh ₃) $\rightarrow \pi^*$ (L ²)]
(0.0032)	(79.1%), H-4→L (8.4%)	
283.3 nm	H-7→L (9.0%), H-6→L (73.5%) , H-5→L (4.2%),	LLCT[π (PPh ₃)→ π *(L ²)] +
(0.0071)	H-4→L (2.2%), H-2→L+1 (4.8%)	L[L ²]

Table S5. For compound 6

λ_{calc} / nm	Changes of the electron density (%	Transition Characters
(Oscillator	contribution; H:HOMO,L:LUMO)	
Strength)		
326.98 nm	H →L (88.4%) , H→L+1 (8.1%)	LLCT[$\pi(\mathbf{L}^3) \rightarrow \pi^*(\text{PPh}_3)$]
(0.0021)		
324.26 nm	H→L (6.0%), H→L+1 (80.5%) , H→L+2 (8.9%)	LLCT[$\pi(\mathbf{L}^3) \rightarrow \pi^*(\text{PPh}_3)$]
(0.0009)		
321.36 nm	H→L (3.1%), H→L+1 (7.1%), H→L+2 (81.0%) ,	LLCT[$\pi(\mathbf{L}^3) \rightarrow \pi^*(\text{PPh}_3)$]
(0.0006)	H→L+3 (3.7%)	
317.33 nm	H→L+3 (3.8%), H→L+4 (20.3%), H→L+5	LLCT[$\pi(\mathbf{L}^3) \rightarrow \pi^*(\text{PPh}_3)$]
(0.0068)	(68.8%) , H→L+6 (3.4%)	
316.22 nm	H →L+4 (73.8%) , H→L+5 (20.0%)	LLCT[$\pi(\mathbf{L}^3) \rightarrow \pi^*(\text{PPh}_3)$]
(0.0094)		
314.97 nm	H→L+2 (4.8%), H→L+3 (89.8%) , H→L+5	LLCT[$\pi(\mathbf{L}^3) \rightarrow \pi^*(\text{PPh}_3)$]
(0.0029)	(3.3%)	
313.37 nm	H→L+4 (2.4%), H→L+5 (2.4%) , H→L+6	LLCT[$\pi(\mathbf{L}^3) \rightarrow \pi^*(\text{PPh}_3)$]
(0.0249)	(88.6%)	
309.16 nm	H →L+7 (91.2%) , H→L+9 (3.2%)	LLCT[$\pi(\mathbf{L}^3) \rightarrow \pi^*(\text{PPh}_3)$]
(0.0077)		
305.76 nm	H→L+7 (3.1%), H→L+8 (3.3%), H→L+9	LLCT[$\pi(\mathbf{L}^3) \rightarrow \pi^*(\text{PPh}_3)$]
(0.0267)	(87.6%)	
303.52 nm	H →L+8 (95.7%) , H→L+9 (3.3%)	LLCT[$\pi(\mathbf{L}^3) \rightarrow \pi^*(\text{PPh}_3)$]
(0.0029)		

Figure S8. Overlaid experimental (black) and predicted (red) electronic absorption spectra of **3** - **6** in dichloromethane. The predicted vertical transitions were shown as red vertical bars with height equal to their calculated oscillator strengths.

