Supporting Information for

Photoinduced electron transfer and remarkable enhancement of magnetic susceptibility in bridging pyrazine complexes

Bin Xia,^a Yu Zhou,^a Qing-Lun Wang,^{*a} Xiu-Fang Xu,^a Yu-Zhang Tong,^a Xian-He Bu,^a and Jian-Rong Li^b

Dedicated to Professor Dai-Zheng Liao on the occasion of his 80th birthday

^aCollege of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China.

^bDepartment of Chemistry and Chemical Engineering, Beijing Universisy of Technology, Beijing 100124, P. R. China.

Corresponding to

wangql@nankai.edu.cn

Tables

Bond lengths					
Mn(1)-O(1)	2.1814(11)	Mn(1)-N(1)	2.2840(13)		
Mn(1)-Cl(1)	2.5134(3)				
Bond angles					
O(1)-Mn(1)-O(1)#1	180.00(4)	O(1)-Mn(1)-N(1)#1	90.53(4)		
O(1)-Mn(1)-N(1)	89.47(4)	O(1)-Mn(1)-Cl(1)	88.36(3)		
O(1)-Mn(1)-Cl(1)#1	91.64(3)	N(1) -Mn(1)-N(1)#1	180.00(9)		
N(1)-Mn(1)-Cl(1)	89.74(3)	N(1)-Mn(1)-Cl(1)#1	90.26(3)		
Cl(1)#1-Mn(1)-Cl(1)	180.0	C(1)-N(1)-Mn(1)	121.52(10)		
C(2)-N(1)-Mn(1)	121.64(10)	S(1)-O(1)-Mn(1)	127.22(6)		

Table S1a. Selected bond lengths (Å) and angles (°) for complex 1

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y, -z+1; #2 -x, -y+1, -z+1.

Bond lengths						
Fe(1)-O(1)	2.0957(13)	Fe(1)-N(1)	2.1893(15)			
Fe(1)-Cl(1)	2.5023(4)					
Bond angles						
O(1)-Fe(1)-O(1)#1	180.0	O(1)-Fe(1)-N(1)#1	89.55(5)			
O(1)-Fe(1)-N(1)	90.45(5)	O(1)-Fe(1)-Cl(1)	92.79(4)			
O(1)-Fe(1)-Cl(1)#1	87.21(4)	N(1)-Fe(1)-N(1)#1	180.0			
N(1)-Fe(1)-Cl(1)	89.51(4)	N(1)-Fe(1)-Cl(1)#1	90.49(4)			
Cl(1)#1-Fe(1)-Cl(1)	180.0	C(1)-N(1)-Fe(1)	121.63(12)			
C(2)-N(1)-Fe(1)	121.96(12)	S(1)-O(1)-Fe(1)	126.09(8)			

Table S1b. Selected bond lengths (Å) and angles (°) for complex 2

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z+2; #2 -x+2, -y, - z+2.

Bond lengths							
Co(1)-O(1)	2.101(4)	Co(1)-N(1)	2.146(5)				
Co(1)-Cl(1)	2.4591(19)						
Bond angles							
O(1)-Co(1)-O(1)#1	180.0	O(1)-Co(1)-N(1)#1	90.72(18)				
O(1)-Co(1)-N(1)	89.28(18)	O(1)-Co(1)-Cl(1)	87.41(13)				
O(1)-Co(1)-Cl(1)#1	92.59(13)	N(1)-Co(1)-N(1)#1	180.0				
N(1)-Co(1)-Cl(1)	89.52(14)	N(1)-Co(1)-Cl(1)#1	90.48(14)				
Cl(1)#1-Co(1)-Cl(1)	180.0	C(1)-N(1)-Co(1)	122.0(4)				
C(2)-N(1)-Co(1)	122.0(4)	S(1)-O(1)-Co(1)	125.9(3)				
Symmetry transformations used to generate equivalent atoms: #1 -x, -y+2, -z; #2 -x+1, -y+1, -z.							

Table S1c. Selected bond lengths (Å) and angles (°) for complex ${\bf 3}$

Graphics

Fig. S1 PXRD spectra of 1-3.

Fig. S2 Photochroism of 1-3 after irradiation for an hour.

Fig. S3 IR spectra and shift of v(S=O-C) for 1-3.

H/Gauss Fig. S4 EPR spectrum of 2 (2P) and 3 (3P).

Fig. S5 Mn 2p, N 1s and S 2p XPS (Al-Ka) core-level spectra of 1(before) and 1P (after).

Fig. S6 Potential electron transfer passway (dashed brown lines) in 1.

Fig. S7 Plots of temperature dependence of $d(\chi_M T)/dT$ (top) for **2** and **2P**.

Fig. S8 Plots of field dependence of $d(M/N\beta)/dH$ (bottom) for **2** and **2P**.