Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Electronic supplementary information for:

Ruthenium complexes featuring cooperative phosphine-pyridineiminophosphorane (PNN) ligands: synthesis, reactivity and catalytic activity.

Thibault Cheisson, Louis Mazaud, and Audrey Auffrant,*

LCM, CNRS-Ecole polytechnique, Université Paris-Saclay, F-91128 Palaiseau Cedex

audrey.auffrant@polytechnique.edu

Table of contents

I. X-Ray Crystallography

	[L ^{Cy} .LiCl] ₂	L ^{Cy} .LiCl.THF	1 ^{Ph}
Formula	$C_{74}H_{100}Cl_{2}Li_{2}N_{4}P_{4} \\$	C41H58ClLiN2OP2	$C_{61}H_{53}Cl_2N_2P_3Ru$
Mw	1254.23	699.22	1078.93
Space group	$P 2_1/c$	P -1	$P2_1/c$
V (Å ³)	3484.4(4)	3914.3(5)	5180.4(6)
a (Å)	10.437(1)	11.582(1)	18.448(1)
b (Å)	16.826(1)	15.915(1)	10.888(1)
c (Å)	19.843(1)	22.595(1)	26.346(1)
a (deg)	90	109.675(1)	90.00
β (deg)	90.720(1)	92.224(1)	101.784(1)
γ (deg)	90	91.818(1)	90.00
Z	2	4	4
d (g.cm ⁻³)	1.195	1.186	1.383
F(000)	1344	1504	2544
θ_{max}	25.024	25.026	25.5615
Rflns measd	13874	44515	42635
Unique data	6090	13690	14755
R _{int}	0.0937	0.0662	0.0589
wR2 ^[b]	0.1912	0.1729	0.1077
R1 ^[c]	0.0982	0.0680	0.0544
GoF ^[a]	1.135	1.060	1.101
CCDC number	1864092	1864093	1864094

Table S1 : Crystallographic Data for [L^{Cy}.LiCl]₂, [L^{Cy}.LiCl.THF], 1^{Ph}

For $I > 2\sigma(I)$: [a] $R_1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$. [b] $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2]/\Sigma [w(F_0^2)^2]]^{\frac{1}{2}}$. [c] Goodness-of-fit $[\Sigma [w(F_0^2 - F_c^2)^2]/(N_{obs} - N_{params})]^{\frac{1}{2}}$.

	1 ^{Cy}	2 ^{Cy}	4
Formula	$C_{55}H_{65}Cl_2N_2P_3Ru$	$C_{55}H_{64}ClN_2P_3Ru$	C55H46ClN2P3Ru, 1.5(C6 H6)
Mw	1018.97	982.51	1081.53
Space group	P -1	P $2_1/c$	$P2_1/c$
V (Å ³)	2968.5(4)	6018.9(2)	5299.4(5)
a (Å)	11.854(1)	12.164(1)	15.919(1)
b (Å)	14.926(1)	30.321(1)	14.857(1)
c (Å)	19.142(1)	16.583(1)	23.059(1)
α (deg)	69.988(1)	90	90
β (deg)	82.727(1)	100.227(1)	103.659(1)
γ (deg)	68.875(1)	90	90
Z	2	4	4
d (g.cm ⁻³)	1.140	1.084	1.356
F(000)	1064	2056	2236
θ_{max}	27.482	25.025	27.483
Rflns measd	41532	60406	38001
Unique data	13490	10375	12040
R _{int}	0.0595	0.0343	0.0550
wR2 ^[b]	0.1009	0.1222	0.0927
R1 ^[c]	0.0505	0.0619	0.0488
GoF ^[a]	1.080	1.136	1.056
CCDC number	1864095	1864096	1864097

Table S2 : Crystallographic Data for 1^{Cy} , 2^{Cy} , 4

 $\text{For } I > 2\sigma(I): {}^{[a]}R_1 = \mathcal{I}[|F_o| - |F_c|]/\mathcal{I}[F_o|. {}^{[b]}wR_2 = [\mathcal{I}[w(F_o^2 - F_c^2)^2]/\mathcal{I}[w(F_o^2)^2]]^{\frac{1}{2}}. {}^{[c]}\text{Goodness-of-fit } [\mathcal{I}[w(F_o^2 - F_c^2)^2]/(N_{obs} - N_{params})]^{\frac{1}{2}}.$

Table S3 : Crystallographic Data for 3^{Cy} .

	3 ^{Cy}
Formula	$C_{55}H_{66}ClN_2P_3Ru$
Mw	984.52
Space group	$P 2_1/n$
V (Å ³)	10195.6(3)
a (Å)	25.7223(5)
b (Å)	12.2413(2)
c (Å)	32.4835(6)
a (deg)	90
β (deg)	94.5770(5)
γ (deg)	90
Ζ	8
d (g.cm ⁻³)	1.283
F(000)	4128
θ_{max}	27.482
Rflns measd	62437
Unique data	22790
wR2 ^[b]	0.0427
R1 ^[c]	0.1587
GoF ^[a]	0.0656
GoF	1.183
CCDC	1864008
number	1004098

For $I > 2\sigma(I)$: [a] $R_1 = \mathcal{I}[|F_o| - |F_c|]/\overline{\mathcal{I}[F_o|. [b]} wR_2 = [\mathcal{I}[w(F_o^2 - F_c^2)^2]/\mathcal{I}[w(F_o^2)^2]]^{\frac{1}{2}}$. [c] Goodness-of-fit $[\mathcal{I}[w(F_o^2 - F_c^2)^2]/(N_{obs} - N_{params})]^{\frac{1}{2}}$.

Figure S2: ${}^{1}H{}^{3}P{}$ NMR spectrum of 1^{Ph} in CDCl₃ at -60 °C.

Figure S4: ${}^{31}P{}^{1}H$ NMR spectrum of 1^{Cy} in toluene.

Figure S6: Overlay of experimental (brown) and simulated (teal) ¹H NMR spectrum of 2^{Ph} in THF- d_8 (centered on the benzylic proton region). Coupling constants used to simulate the ABX pattern of H6 are indicated in the inset, $\delta_{H6a} = 3.94$ and $\delta_{H6a} = 3.95$ ppm.

Figure S10: Overlay of experimental (brown) and simulated (teal) ¹H NMR spectrum of 4 in C_6D_6 . Coupling constants used to simulate the AMX patterns of H_6 and H_7 are indicated in the inset.

Figure S12: ${}^{31}P{}^{1}H$ NMR spectrum of **5** in THF- d_8 .

Figure S13: ¹H NMR (in THF-*d₈*) hydride resonances of: a) 3^{Cy} (2 isomers); b) 5 (no ³¹P decoupling);
c) 5 (with ³¹P decoupling at 100 ppm); d) 5 (full ³¹P decoupling).