Supporting Information for

Enhanced energy barriers triggered by magnetic anisotropy modulation via tuning the functional groups on the bridging ligands in

Dy₂ single-molecule magnets

Yaru Qin,^a Yu Jing,^a Yu Ge,^a Wei Liu,^a Yahong Li,*^a and Yi-Quan Zhang*^b

^aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

^bJiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China

E-mail: liyahong@suda.edu.cn; zhangyiquan@ninu.edu.cn

Supplementary Information Contents

1.	Scheme for synthesis of the ligands H_2L_1 and H_2L_2	2
2.	¹ H, ¹³ C NMR spectra of H_2L_1 , H_2L_2	2
3.	PXRD patterns of 1 and 2	4
4.	IR spectra of H_2L_1 , H_2L_2 , 1 and 2	4
5.	Selected bond lengths and angles for 1 and 2	5
6.	Figure for molecular structure of 2	6
7.	Energy dispersive X- ray spectroscopy (EDS) for 1 and 2	7
8.	2D supramolecular framework for 1 generated by hydrogen-bonding interactions	8
9.	Hydrogen-bonding parameters of 1	8
10.	1D supramolecular chain of 2 generated by hydrogen-bonding interactions	8
11.	Hydrogen-bonding parameters of 2	8
12.	MS spectra of complexes 1 and 2	9
13.	Plots of magnetizations (<i>M</i>) vs dc field (<i>H</i>) for 1 (a) and 2 (b) at 2 K	10
14.	ln τ versus T^{-1} plots for complexes 1 and 2 at high temperature	.10
15.	Best fitted parameters for complexes 1 and 2 under 0 Oe dc field	11
16.	Computational details	.12

Fig. S1 The $^1\mathrm{H}$ NMR (a) and $^{13}\mathrm{C}$ NMR (b) spectra of $\mathrm{H}_2\mathrm{L}_1.$

Fig. S4 FT-IR spectra of H_2L_1 (a), H_2L_2 (b), 1 (c) and 2 (d).

1			
Dy(1)-O(1)A	2.332(3)	Dy(1)-O(5)	2.436(4)
Dy(1)-O(1)	2.376(3)	Dy(1)-O(2)A	2.512(4)
Dy(1) -O(3)	2.187(4)	Dy(1)-O(7)	2.339(4)
Dy(1)-O(4)	2.502(4)	Dy(1)-N(1)	2.445(5)
O(1)-Dy(1)-O(1)A	66.14(14)	O(1)A-Dy(1)-O(4)	119.24(13)
O(1)-Dy(1)-O(4)	76.33(13)	O(1)A-Dy(1)-O(5)	88.98(14)
O(1)-Dy(1)-O(5)	99.73(15)	O(1)-Dy(1)-O(2)A	130.41(11)
O(1)A-Dy(1)-O(2)A	65.31(12)	O(1)A-Dy(1)-O(7)	78.52(14)
O(1)-Dy(1)-O(7)	105.08(16)	O(1)-Dy(1)-N(1)	77.49(13)
O(1)A-Dy(1)-N(1)	128.67(14)	O(3)-Dy(1)-O(1)A	146.34(13)
O(3)-Dy(1)-O(1)	147.51(12)	O(3)-Dy(1)-O(4)	82.16(15)
O(3)-Dy(1)-O(5)	85.28(14)	O(3)-Dy(1)-O(2)A	81.62(13)
O(3)-Dy(1)-O(7)	87.15(16)	O(3)-Dy(1)-N(1)	76.02(14)
O(4)-Dy(1)-O(2)A	120.50(14)	O(5)-Dy(1)-O(4)	51.81(14)
O(5)-Dy(1)-O(2)A	70.05(15)	O(5)-Dy(1)-N(1)	133.41(15)
O(7)-Dy(1)-O(4)	159.68(14)	O(7)-Dy(1)-O(5)	144.48(16)
O(7)-Dy(1)-O(2)A	74.52(16)	O(7)-Dy(1)-N(1)	77.43(15)
N(1)-Dy(1)-O(4)	83.22(14)	N(1)-Dy(1)-O(2)A	144.73(14)
2			
Dy(1)-O(6)	2.438(5)	Dy(1)-O(4)	2.461(5)
Dy(1)-O(5)	2.465(5)	Dy(1)-O(8)	2.419(5)
Dy(1)-O(3)	2.165(5)	Dy(1)-O(2)	2.336(5)
Dy(1)-O(1)	2.318(5)	Dy(1)-N(1)	2.467(6)
Dy(2)-O(9)	2.155(5)	Dy(2)-O(14)	2.381(5)
Dy(2)-O(10)	2.464(5)	Dy(2)-O(11)	2.534(5)
Dy(2)-O(12)	2.462(5)	Dy(2)-O(2)	2.304(5)
Dy(2)-O(1)	2.337(5)	Dy(2)-N(2)	2.446(6)
O(6)-Dy(1)-O(5)	52.37(16)	O(6)-Dy(1)-O(4)	130.38(17)
O(6)-Dy(1)-N(1)	75.91(18)	O(5)-Dy(1)-N(1)	113.11(18)
O(3)-Dy(1)-O(6)	109.27(18)	O(3)-Dy(1)-O(5)	85.58(17)
O(3)-Dy(1)-O(1)	145.28(17)	O(3)-Dy(1)-O(4)	80.79(17)
O(3)-Dy(1)-O(8)	81.23(18)	O(3)-Dy(1)-O(2)	143.71(16)
O(3)-Dy(1)-N(1)	73.59(19)	O(1)-Dy(1)-O(6)	82.36(16)
O(1)-Dy(1)-O(5)	124.51(16)	O(1)-Dy(1)-O(4)	117.20(17)
O(1)-Dy(1)-O(8)	75.52(16)	O(1)-Dy(1)-O(2)	67.90(16)
O(1)-Dy(1)-N(1)	78.14(18)	O(4)-Dy(1)-O(5)	81.61(17)
O(4)-Dy(1)-N(1)	148.88(18)	O(8)-Dy(1)-O(6)	151.91(17)
O(8)-Dy(1)-O(5)	155.61(17)	O(8)-Dy(1)-O(4)	76.11(18)
O(8)-Dy(1)-N(1)	82.70(18)	O(2)-Dy(1)-O(6)	84.06(17)
O(2)-Dy(1)-O(5)	76.23(17)	O(2)-Dy(1)-O(4)	65.81(16)
O(2)-Dy(1)-O(8)	102.97(17)	O(2)-Dy(1)-N(1)	142.50(17)
O(9)-Dy(2)-O(10)	81.26(17)	O(9)-Dy(2)-O(12)	99.17(17)

Table S1. Selected bond lengths (Å) and angle (°) for complexes 1 and 2.

O(9)-Dy(2)-O(1)	140.65(16)	O(9)-Dy(2)-O(14)	85.76(18)
O(9)-Dy(2)-O(11)	78.53(17)	O(9)-Dy(2)-O(2)	150.97(17)
O(9)-Dy(2)-N(2)	74.12(18)	O(10)-Dy(2)-O(11)	75.72(16)
O(12)-Dy(2)-O(10)	125.14(16)	O(12)-Dy(2)-O(11)	51.38(16)
O(1)-Dy(2)-O(10)	65.75(15)	O(1)-Dy(2)-O(12)	84.10(16)
O(1)-Dy(2)-O(14)	104.09(17)	O(1)-Dy(2)-O(11)	73.21(16)
O(1)-Dy(2)-N(2)	143.34(17)	O(14)-Dy(2)-O(10)	74.17(16)
O(14)-Dy(2)-O(12)	160.48(17)	O(14)-Dy(2)-O(11)	147.76(17)
O(14)-Dy(2)-N(2)	86.22(18)	O(2)-Dy(2)-O(10)	119.33(16)
O(2)-Dy(2)-O(12)	85.59(17)	O(2)-Dy(2)-O(1)	68.12(16)
O(2)-Dy(2)-O(14)	81.29(18)	O(2)-Dy(2)-O(11)	124.24(16)
O(2)-Dy(2)-N(2)	79.17(18)	N(2)-Dy(2)-O(10)	149.53(17)
N(2)-Dy(2)-O(12)	77.14(18)	N(2)-Dy(2)-O(11)	115.57(17)

Symmetry transformations used to generate equivalent atoms: A: 1-X, 1-Y, +Z

Fig. S5 (a) Molecular structure of $Dy_2(L_2)_2(NO_3)_2(MeOH)_2$ (2). Hydrogen atoms have been omitted for clarity. (b) Coordination polyhedra of Dy^{III} ions in 2.

Energy dispersive X- ray spectroscopy (EDS)

Energy dispersive X- ray spectroscopies (EDS) for complexes 1 and 2 are shown in Fig S6. Elements C, O, N, Dy and Cl were inclued in complex 1, while elements C, O, N and Dy Cl were inclued in complex 2. As Fig. S6 shown, the At% of Dy and Cl is 2:1.9 for 1, and the At% of Dy and N is 1:2.06 for 2. The results of EDS are matched with structures of complexes 1 and 2.

(a)

(b)

Fig. S6 (a) Energy dispersive X- ray spectroscopy (EDS) for 1; (b) Energy dispersive X- ray spectroscopy (EDS) for 2.

Fig. S7. 2D supramolecular framework of 1 generated by intermolecular hydrogen-bonding interactions.

Table S2. Hydrogen-bonding parameters ((Å, deg) of 1 .
---	------------------------

D–H···A	d(D-H)	$d(H \cdots A)$	DA	∠D–H…A
O(7)–H(7)···O(8)	0.87(5)	1.71(4)	2.553(8)	165(5)
C(9)–H(9)…O(4)	0.94	2.51	3.390(7)	157
C(17)–H(17A)····O(6)	0.97	2.58	3.247(11	126
)	

Fig. S8 One-dimensional supramolecular chain of 2 generated by intermolecular hydrogen-bonding interactions.

Table S3. Hydrogen-bonding parameters (A, deg) of 2.							
D–H…A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	∠D–H…A			
O(8)–H(8)···O(13)	0.88(2)	1.96(3)	2.810(8)	165(6)			
O(14)-H(14)···O(13)	0.88(4)	1.91(5)	2.774(7)	169(4)			

 Table S3. Hydrogen-bonding parameters (Å, deg) of 2.

Fig. S9 (a) MS spectrum of complex 1; (b) MS spectrum of complex 2.

Fig. S11 ln τ vs. T^{-1} plot for 1 (a) and 2 (b) at the high temperature; the solid lines represent the least–squares fits of the experimental data to the Arrhenius law.

	6-16 K.							
T/K	χs	χτ	τ	α				
6	0.381714E-01	0.496999E+01	0.166904E-01	0.129509E+00				
6.5	0.276074E-01	0.456940E+01	0.117125E-01	0.129615E+00				
7	0.160350E-01	0.424680E+01	0.851252E-02	0.132488E+00				
7.5	0.650556E-03	0.398421E+01	0.634482E-02	0.140138E+00				
8	0.970757E-03	0.372401E+01	0.480126E-02	0.139155E+00				
8.5	0.151818E-02	0.350489E+01	0.371415E-02	0.139520E+00				
9	0.982475E-09	0.330764E+01	0.292209E-02	0.141693E+00				
9.5	0.148010E-08	0.312868E+01	0.232876E-02	0.141698E+00				
10	0.228107E-08	0.296595E+01	0.188103E-02	0.141490E+00				
10.5	0.314132E-08	0.281858E+01	0.153595E-02	0.141279E+00				
11	0.436442E-08	0.268697E+01	0.126748E-02	0.141416E+00				
11.5	0.571573E-08	0.256779E+01	0.105998E-02	0.141539E+00				
12	0.558546E-08	0.246068E+01	0.892761E-03	0.141379E+00				
12.5	0.743289E-08	0.236652E+01	0.758836E-03	0.141609E+00				
13	0.115535E-07	0.227558E+01	0.649164E-03	0.141310E+00				
13.5	0.163157E-07	0.219380E+01	0.558541E-03	0.141490E+00				
14	0.264759E-07	0.211467E+01	0.483604E-03	0.141485E+00				
14.5	0.415237E-07	0.204218E+01	0.421235E-03	0.141850E+00				
15	0.658685E-07	0.197201E+01	0.368716E-03	0.142504E+00				
15.5	0.101425E-06	0.190778E+01	0.325240E-03	0.144595E+00				
16	0.155729E-06	0.184577E+01	0.286886E-03	0.145537E+00				

Table S4 Best fitted parameters with the extended Debye model for 1 under 0 Oe dc field in the temperature range

 Table S5 Best fitted parameters with the extended Debye model for 2 under 0 Oe dc field in the temperature range 10-25 K.

<i>T</i> /K	χs	χτ	τ	α
10	0.212884E-01	0.292959E+01	0.162653E-01	0.118796E+00
11	0.147100E-01	0.269520E+01	0.103367E-01	0.123166E+00
12	0.591568E-02	0.250973E+01	0.678122E-02	0.127483E+00
13	0.262026E-14	0.232540E+01	0.462619E-02	0.135184E+00
14	0.367578E-14	0.217852E+01	0.326050E-02	0.139836E+00
15	0.540604E-14	0.207410E+01	0.236149E-02	0.146075E+00
16	0.892449E-14	0.194982E+01	0.176483E-02	0.149198E+00
17	0.140218E-13	0.184850E+01	0.132385E-02	0.149312E+00
18	0.245791E-13	0.175163E+01	0.100335E-02	0.146799E+00
19	0.409377E-13	0.165642E+01	0.773132E-03	0.142985E+00
20	0.454971E-13	0.157116E+01	0.602391E-03	0.137239E+00
21	0.675578E-13	0.150338E+01	0.472115E-03	0.129767E+00
22	0.101891E-12	0.142622E+01	0.379273E-03	0.125826E+00
23	0.157391E-12	0.135760E+01	0.304617E-03	0.118268E+00
24	0.234102E-12	0.130380E+01	0.247304E-03	0.111549E+00
25	0.346942E-12	0.125674E+01	0.202816E-03	0.107210E+00

Computational details

Complete-active-space self-consistent field (CASSCF) calculations on lanthanide Dy^{III} fragments of the model structures (see Fig. S11 for the model structures of **1**_*a*, **1**_*b*, **2**_*a* and **2**_*b*) extracted from the compounds on the basis of single-crystal X-ray determined geometries have been carried out with MOLCAS 8.0 program package (see Fig. S12 for the complete structures of complexes **1** and **2**).^{S1} Each dysprosium center was calculated keeping the experimentally determined structure of the corresponding compound while replacing the neighboring Dy^{III} ion by diamagnetic Lu^{III} .

The basis sets for all atoms are atomic natural orbitals from the MOLCAS ANO-RCC library: ANO-RCC-VTZP for Dy^{III} ion; VTZ for close O; VDZ for distant atoms. The calculations employed the second order Douglas-Kroll-Hess Hamiltonian, where scalar relativistic contractions were taken into account in the basis set and the spin-orbit couplings were handled separately in the restricted active space state interaction (RASSI-SO) procedure. For the fragment of individual Dy^{III} ion, active electrons in 7 active spaces include all *f* electrons (CAS(9 in 7)) in the CASSCF calculation. To exclude all the doubts, we calculated all the roots in the active space. We have mixed the maximum number of spin-free state which was possible with our hardware (all from 21 sextets, 128 from 224 quadruplets, 130 from 490 doublets). Single_Aniso^{S2} program was used to obtain the *g* tensors, energy levels, magnetic axes, *et al.*, based on the above CASSCF/RASSI calculations.

Fig. S12 Calculated model structures of 1_a, 1_b, 2_a and 2_b; H atoms are omitted.

To fit the exchange interaction in the complex, we took two steps to obtain them. Firstly, we calculated each Dy^{III} fragment using CASSCF to obtain the corresponding magnetic properties. Then, the exchange interaction between the magnetic centers is considered within the Lines model,^{S3} while the account of the dipole-dipole magnetic coupling is treated exactly. The Lines model is effective and has been successfully used widely in the research field of f-element single-molecule magnets.^{S4}

The exchange Ising Hamiltonian is:

$$\hat{H}_{exch} = -\mathcal{Y}_{total} \,\hat{\mathscr{Y}}_{\mathcal{Y}_1} \,\hat{\mathscr{Y}}_{\mathcal{Y}_2} \tag{S1}$$

The \mathscr{Y}_{total} is the parameter of the total magnetic interaction ($\mathscr{Y}_{total} = \mathscr{Y}_{diploar} + \mathscr{Y}_{exchange}$) between magnetic center ions. The $\mathscr{Y}_{By} = \pm 1/2$ are the ground pseudospin on the Dy^{III} sites. The dipolar magnetic coupling can be calculated exactly, while the exchange coupling constants were fitted through comparison of the computed and measured

magnetic susceptibilities using the POLY_ANISO program.^{S2}

Table S6 Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and m_J values of the lowest Kramers doublets (KDs) of individual Dy^{III} fragments of 1_a , 1_b , 2_a and 2_b .

KD ₂	1_ <i>a</i>			1_ <i>b</i>		
KD8	E/cm^{-1}	g	m_J	E/cm ⁻¹	g	m_J
		0.002			0.003	
1	0.0	0.004	±15/2	0.0	0.005	±15/2
		19.686			19.723	
		0.059			0.053	
2	234.0	0.075	±13/2	229.8	0.070	±13/2
		16.860			16.935	
		1.254			1.039	
3	383.9	1.438	±11/2	385.0	1.223	±11/2
		13.075			13.223	
		4.838			4.621	
4	460.1	5.922	±7/2	458.3	5.942	$\pm 5/2$
		10.123			10.960	
		0.253			0.280	
5	508.5	2.718	$\pm 1/2$	506.7	2.283	$\pm 1/2$
		13.487			13.775	
		0.837			1.053	
6	569.6	1.906	$\pm 5/2$	570.0	1.997	±7/2
		14.344			14.511	
		0.968			1.126	
7	599.3	2.343	$\pm 3/2$	597.9	2.463	$\pm 3/2$
		15.957			15.696	

		0.233			0.286	
8	641.8	0.546	±9/2	636.9	0.775	±9/2
		18.824			18.698	
KDs		2_a			2_b	
	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J
		0.001			0.003	
1	0.0	0.003	±15/2	0.0	0.004	±15/2
		19.696			19.732	
		0.023			0.086	
2	229.8	0.023	±13/2	267.2	0.119	$\pm 13/2$
		16.857			16.644	
		0.268			0.723	
3	400.4	0.363	±11/2	454.0	0.874	$\pm 11/2$
		13.778			13.480	
		4.486			3.967	
4	511.2	5.475	±9/2	582.5	4.898	±9/2
		9.195			9.254	
		0.929			3.356	
5	584.8	4.882	$\pm 5/2$	672.6	3.918	$\pm 5/2$
		10.066			11.647	
		1.562			10.097	
6	627.6	2.379	$\pm 1/2$	752.3	8.141	$\pm 1/2$
		16.058			0.100	
		0.170			11.446	
7	662.6	0.568	$\pm 3/2$	766.1	6.750	$\pm 3/2$
		17.680			0.529	
		0.016			0.072	
8	772.1	0.022	±7/2	832.5	0.157	±7/2
		19.608			19.355	

Table S7 Exchange energies (cm⁻¹) and main values of the g_z for the lowest two exchange doublets of 1 and 2.

	1	l	2		
	E/cm^{-1}	gz	E/cm^{-1}	gz	
1	0.0	38.333	0.0	39.138	
2	3.0	9.143	2.6	4.771	

Fig. S13 Calculated (red solid line) and experimental (circle dot) data of magnetic susceptibilities of complexes 1(a) and 2(b). The intermolecular interactions zJ' of 1 and 2 were fitted to 0.00 and -0.02 cm^{-1} , respectively.

Fig. S14 Calculated orientations of the local main magnetic axes of the ground Kramers doublet on Dy^{III} ions of complexes 1 (a) and 2 (b).

Table S8. Included angle (θ) between the local main magnetic axis of the ground Kramers doublet on Dy₁ (θ_1) or Dy₂ (θ_2) and the vector connecting the two Dy^{III} ions for complexes **1** and **2**.

Fig. S15 The magnetization blocking barriers in **1**_*a*, **1**_*b*, **2**_*a* and **2**_*b*. The thick black lines represent the Kramers doublets as a function of their magnetic moment along the magnetic axis. The green lines correspond to diagonal quantum tunneling of magnetization (QTM); the blue line represent off-diagonal relaxation process. The numbers at each arrow stand for the mean absolute value of the corresponding matrix element of transition magnetic moment. **References:**

- S1 (a) Aquilante, F.; De Vico, L.; Ferré, N.; Ghigo, G.; Malmqvist, P.-Å.; Neogrády, P.; Pedersen, T. B.; Pitonak, M.; Reiher, M.; Roos, B. O.; Serrano-Andrés, L.; Urban, M.; Veryazov, V.; Lindh, R. *J. Comput. Chem.*, 2010, *31*, 224. (b) Veryazov, V.; Widmark, P. -O.; Serrano-Andres, L.; Lindh, R.; Roos, B. O. *Int. J. Quantum Chem.*, 2004, *100*, 626. (c) Karlström, G.; Lindh, R.; Malmqvist, P. -Å.; Roos, B. O.; Ryde, U.; Veryazov, V.; Widmark, P. -O.; Cossi, M.; Schimmelpfennig, B.; Neogr'ady, P.; Seijo, L. *Comput. Mater. Sci.*, 2003, *28*, 222.
- S2 (a) Chibotaru, L. F.; Ungur, L.; Soncini, A. Angew. Chem. Int. Ed., 2008, 47, 4126. (b) Ungur, L.; Van den Heuvel, W.; Chibotaru, L. F. New J. Chem., 2009, 33, 1224. (c) Chibotaru, L. F.; Ungur, L.; Aronica, C.; Elmoll, H.; Pilet, G.; Luneau, D. J. Am. Chem. Soc., 2008, 130, 12445.
- S3 Lines, M. E. J. Chem. Phys. 1971, 55, 2977.
- S4 (a) Mondal, K. C.; Sundt, A.; Lan, Y. H.; Kostakis, G. E.; Waldmann, O.; Ungur, L.; Chibotaru, L. F.; Anson, C. E.; Powell, A. K. *Angew. Chem. Int. Ed.* 2012, *51*, 7550. (b) Langley, S. K.; Wielechowski, D. P.; Vieru, V.; Chilton, N. F.; Moubaraki, B.; Abrahams, B. F.; Chibotaru, L. F.; Murray, K. S. *Angew. Chem. Int. Ed.* 2013,