Ru(II)-peptide bioconjugates with the cppH linker (cppH = 2-(2'-pyridyl)pyrimidine-4-carboxylic acid): Synthesis, structural characterization, and different stereochemical features between organic and aqueous solvents.

Federica Battistin,^a Daniel Siegmund,^b Gabriele Balducci,^a Enzo Alessio,^{a*} Nils Metzler-Nolte^{b*}

- a) Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.
 Email: alessi@units.it; WWW: http://dscf.units.it/en
- b) Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Inorganic Chemistry I – Bioinorganic Chemistry, Bochum, Germany.
 Email: nils.metzler-nolte@rub.de; WWW: www.chemie.rub.de/ac1

Supplementary Information

Figures S1-S9. NMR characterization of *trans,cis*-RuCl₂(CO)₂(cppH-RRPYIL) (7) in DMSO-*d*₆ and D₂O.
Figures S10-S13. NMR characterization of [Ru([9]aneS₃)(cppH-RRPYIL)(PTA)]²⁺ (8) in DMSO-*d*₆ and D₂O.
Figures S14-S15. NMR characterization of [Ru([9]aneS₃)Cl(cppH)]⁺ (10) in D₂O.
Figures S16-S20. NMR characterization of [Ru([9]aneS₃)Cl(cppH-RRPYIL)]⁺ (11) in DMSO-*d*₆ and D₂O.
Figure S21. Comparison of the ¹H NMR spectra in D₂O (region of the aromatic Tyr protons) of 7, 8, and 11.
Figure S22-S30. NMR characterization of cppH-RRPYIL in DMSO-*d*₆, D₂O, and CD₃OD.
Figure S31-34. Analytical HPLC chromatograms for *trans,cis*-RuCl₂(CO)₂(cppH-RRPYIL) (7), [Ru([9]aneS₃)(cppH-RRPYIL)(PTA)]²⁺ (8), [Ru([9]aneS₃)Cl(cppH-RRPYIL)]⁺ (11) and cppH-RRPYIL.

Figure S1. ¹H NMR spectra in D₂O (region of the aromatic protons of Tyr) of bio-conjugate 7 obtained 1) by reaction (using SPPS) between *trans,cis*-RuCl₂(CO)₂(cppH- κN^{o}) and RRPYIL (top), and 2) by the reaction in solution between *trans,cis,cis*-RuCl₂(CO)₂(dmso-O)₂ and cppH-RRPYIL (bottom).

Figure S2. ¹H NMR spectra in D₂O of bio-conjugate **7** obtained 1) by reaction (using SPPS) between *trans,cis*-RuCl₂(CO)₂(cppH- κN°) and RRPYIL (top), and 2) by the reaction in solution between *trans,cis,cis*-RuCl₂(CO)₂(dmso-O)₂ and cppH-RRPYIL (bottom).

Figure S3. ¹H-¹H COSY spectrum in DMSO- d_6 of *trans, cis*-RuCl₂(CO)₂(cppH-RRPYIL) (7) (selected regions). NH indicates the amidic protons of the peptide.

Figure S4. Aromatic region of the ¹H-¹³C HSQC NMR spectrum in DMSO- d_6 of *trans, cis*-RuCl₂(CO)₂(cppH-RRPYIL) (7). NH indicates the amidic protons of the peptide.

Figure S5. Aliphatic region of the ¹H-¹³C HSQC NMR spectrum in DMSO- d_6 of *trans,cis*-RuCl₂(CO)₂(cppH-RRPYIL) (7).

Figure S6. Aromatic region of the ¹H NMR spectrum of **7** in D₂O, with the integrals for the resonances of protons 3' and 6'(blue labels for the major isomer, red for the minor one).

Figure S7. ¹H-¹H COSY in D₂O (aromatic region) of *trans, cis*-RuCl₂(CO)₂(cppH-RRPYIL) (7).

Figure S8. ¹H-¹³C HSQC NMR spectrum in D₂O (aromatic region) of *trans,cis*-RuCl₂(CO)₂(cppH-RRPYIL) (7).

Figure S9. ¹H-¹³C HSQC NMR spectrum in D₂O (aliphatic region) of *trans,cis*-RuCl₂(CO)₂(cppH-RRPYIL) (7).

Figure S10. ¹H-¹H COSY NMR spectrum in DMSO- d_6 (selected regions) of [Ru([9]aneS₃)(cppH-NT)(PTA)]²⁺ (8). NH indicates the amidic protons of the peptide.

Figure S11. ¹H-¹³C HSQC NMR spectrum in DMSO- d_6 (aromatic region) of [Ru([9]aneS₃)(cppH-NT)(PTA)]²⁺ (8). NH indicates the amidic protons of the peptide.

Figure S12. Upfield region of the ¹H NMR spectrum in DMSO- d_6 of [Ru([9]aneS₃)(cppH-NT)(PTA)]²⁺ (8).

Figure S13. Upfield region of the ¹H NMR spectrum in D₂O of $[Ru([9]aneS_3)(cppH-NT)(PTA)]^{2+}$ (8).

Figure S14. ¹H NMR spectra in D_2O of the model complex [Ru([9]aneS₃)Cl(cppH)]Cl (10) after dissolution in D_2O (top) and after addition of an excess of NaCl (bottom).

Figure S15. ¹H-¹H COSY NMR spectrum in D_2O + NaCl of the model complex [Ru([9]aneS₃)Cl(cppH)]Cl (10).

Figure S16. ¹H NMR spectra (aromatic region) of $[Ru([9]aneS_3)Cl(cppH-RRPYIL)]^+$ (11) after dissolution in D₂O (top) and after addition of an excess of NaCl (bottom) to the same solution.

Figure S17. ¹H-¹H COSY NMR spectrum in DMSO- d_6 (selected regions) of [Ru([9]aneS₃)Cl(cppH-NT)]⁺ (11). NH indicates the amidic protons of the peptide.

Figure S18. ¹H-¹³C HSQC NMR spectrum in DMSO- d_6 (aromatic region) of [Ru([9]aneS₃)Cl(cppH-NT)]⁺ (11). NH indicates the amidic protons of the peptide.

Figure S19. Upfield region of the ¹H NMR spectrum in DMSO- d_6 of [Ru([9]aneS₃)Cl(cppH-RRPYIL)]⁺ (11).

Figure S20. Upfield region of the ¹H NMR spectrum in D_2O of $[Ru([9]aneS_3)Cl(cppH-RRPYIL)]^+$ (11).

Figure S21. ¹H NMR spectra in D_2O (region of the aromatic Tyr protons) of **7** (top), **11** (middle, in $D_2O + NaCl$), and **8** (bottom).

Figure S22. ¹H-¹H COSY NMR spectrum in DMSO- d_6 of cppH-RRPYIL (selected regions). NH indicates the amidic protons of the peptide.

Figure S23. ¹H-¹³C HSQC NMR spectrum in DMSO- d_6 (aromatic region) of cppH-RRPYIL. NH indicates the amidic protons of the peptide.

Figure S24. ¹H-¹³C HSQC NMR spectrum in DMSO- d_6 (aliphatic region) of cppH-RRPYIL.

Figure S25. ¹H-¹H COSY NMR spectrum in D₂O (aromatic region) of cppH-RRPYIL.

Figure S26. ¹H-¹³C HSQC NMR spectrum in D₂O (aromatic region) of cppH-RRPYIL.

Figure S27. ¹H-¹³C HSQC NMR spectrum in D₂O (aliphatic region) of cppH-RRPYIL.

Figure S28. ¹H NMR spectra (aromatic region) of cppH-RPPYIL recorded at 25°C (top), 45°C (middle) and 65°C (bottom) in D_2O .

Figure S29. ¹H NMR spectra (aromatic region) of cppH-RPPYIL recorded at pD = 3.5 (top) and pD > 7.5 (bottom) in D₂O.

Figure S30. ¹H-¹H COSY NMR spectrum (aromatic region) of cppH-RRPYIL in CD₃OD.

Figure S31. Analytical HPLC chromatogram of *trans, cis*-RuCl₂(CO)₂(cppH-RRPYIL) (7).

Figure S32. Analytical HPLC chromatogram of [Ru([9]aneS₃)(cppH-RRPYIL)(PTA)]²⁺ (8).

Figure S33. Analytical HPLC chromatogram of $[Ru([9]aneS_3)Cl(cppH-RRPYIL)]^+$ (11).

Figure S34. Analytical HPLC chromatogram of cppH-RRPYIL.

	10		
Empirical Formula	$C_{16}H_{19}N_3Cl_2O_2S_3Ru \cdot 0.45H_2O$		
Formula weight (Da)	561.85		
Temperature (K)	100(2)		
Wavelength (Å)	0.700		
Crystal system	monoclinic		
Space Group	<i>P</i> 21/c		
a (Å)	17.795(2)		
b (Å)	13.8510(8)		
c (Å)	11.484(1)		
α (°)	90		
β (°)	104.985(15)		
γ (°)	90		
V (Å ³)	2734.3(5)		
Ζ	4		
ρ (g·cm ⁻³)	1.3643		
F(000)	1152		
$\mu (mm^{-1})$	0.961		
θ min, max (°)	2.317, 30.977		
Resolution (Å)	0.68		
Total refl. collctd	98476		
Independent refl.	8800		
Obs. Refl. [Fo>4σ(Fo)]	8732		
$I/\sigma(I)$ (all data)	77.73		
$I/\sigma(I)$ (max res)	34.73		
Completeness (all data)	0.950		
R _{merge} (all data)	2.2%		
R _{merge} (max res)	2.6%		
Multiplicity (all data)	11.0		
Multiplicity (max res)	5.0		
Data/restraint/parameters	8800/7/284		
GooF	1.067		
$R[I > 2.0\sigma(I)]$, ^a wR2	0.0569, 0.1828		
[I>2.0σ(I)] ^a			
R (all data), ^a wR2 (all data) ^a	0.0571, 0.1830		

Table S1. Crystallographic data and refinement details for compound $[Ru([9]aneS_3)Cl(cppH)]Cl$ $\cdot 0.45H_2O$ (10).

 ${}^{a}R_{1} = \Sigma |Fo| - |Fc|| / \Sigma |Fo|, wR_{2} = [\Sigma w (Fo^{2} - Fc^{2})^{2} / \Sigma w (Fo^{2})^{2}]^{\frac{1}{2}}$

Bond distances (Å)							
Ru1–Cl1	2.4316(7)	Ru1-S21	2.305(1)				
Ru1–N31	2.094(3)	Ru1-S22	2.2943(8)				
Ru1–N32	2.096(2)	Ru1-S23	2.2787(8)				
Bond angles (°)							
N31–Ru1–Cl1	88.57(6)	N32-Ru1-S23	94.65(7)				
N31-Ru1-N32	77.9(1)	S21-Ru1-Cl1	88.58(3)				
N31-Ru1-S21	174.75(7)	S22-Ru1-Cl1	89.92(3)				
N31-Ru1-S22	96.31(7)	S22-Ru1-S21	88.09(3)				
N31-Ru1-S23	94.40(7)	S23-Ru1-Cl1	176.78(3)				
N32–Ru1–Cl1	87.20(7)	S23-Ru1-S21	88.56(3)				
N32-Ru1-S21	97.55(7)	S23-Ru1-S22	88.50(3)				
N32-Ru1-S22	173.59(7)						

Table S2. Selected coordination distances (Å) and angles (°) for $[Ru([9]aneS_3)Cl(cppH)]Cl \cdot 0.45H_2O$ (10)).

Table S3. Minimal inhibitory concentrations (MIC, μ g/mL) of compounds 1-4, 7, 8 and 11 onGram-positive and Gram-negative bacterial strains. n.a. = not active

Compound	E. coli	A. baumannii	P. aeruginosa	B. subtilis	S. aureus	S. aureus
1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	n.a.	n.a.	n.a.	256	n.a.	n.a.
8	512	n.a.	n.a.	n.a.	n.a.	n.a.
11	32	n.a.	n.a.	256	n.a.	n.a.