Supporting Information

Top-Down Fabrication of Hierarchical Nanocubes on Nanosheets Composite for High-Rate Lithium Storage

Jian-Ping Zhang, Xue-Yan Wu,* Xiao Wei, Shu-Mao Xu, Chao Ma, Mou-Hai Shu,*

Kai-Xue Wang, and Jie-Sheng Chen

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

* To whom correspondence should be addressed. E-mail: <u>xueyanwu@sjtu.edu.cn</u> (XYW); <u>mhshu@sjtu.edu.cn (</u>MHS)

This file includes Figure S1-S9 and Table S1.

Figure S1.

Figure S1. FTIR spectra of (a) APS-modified $NiCo_2O_4$ spheres, (b) pure $NiCo_2O_4$ spheres and (c) pure APS.

Figure S2.

Figure S2. Low- and high-magnification SEM images of composites with (a,b) a small amount of GO and (c,d) excessive GO.

Figure S3.

Figure S3. Cycling performance of the GNS@NiCo₂O₄ composites with different carbon contents cycled at a current density of 100 mA g^{-1} for 100 cycles.

Figure S4.

Figure S4. Raman spectra of GNS@NiCo₂O₄ and GO@NiCo₂O₄.

Figure S5.

Figure S5. Nitrogen adsorption-desorption isotherms and BJH pore size distributions of NiCo₂O₄ spheres and GNS@NiCo₂O₄ composites.

Figure S6.

Figure S6. Galvanostatic discharge-charge voltage profiles of (a) $NiCo_2O_4$ spheres and (b) GNS@NiCo_2O_4 composites at a current density of 100 mA g⁻¹.

Figure S7.

Figure S7. The comparative cycling performance of the GNS@NiCo₂O₄ composites and NiCo₂O₄ spheres at a current density of 100 mA g^{-1} for 100 cycles.

Figure S8.

Figure S8. The EIS spectras of $GNS@NiCo_2O_4$ composites and $NiCo_2O_4$ spheres before cycles at a frequency range of 10^5 Hz to 0.1 Hz.

Figure S9

Figure S9. SEM images of the electrodes on copper foil (a,b) before and (c,d) after discharged/charged at a current density of 500 mA g^{-1} for 200 cycles. (a,c) bare NiCo₂O₄ spheres; (b,d) GNS@NiCo₂O₄ composites.

Table S1. Comparing with $NiCo_2O_4$ materials or its composite with conductive matrixas anode for LIB reported in previous literature

Materials	Current Density	Reversible capacity	Ref.
	(mA g ⁻¹)	(mA h ⁻¹)	
		/ cycle number	
NiCo ₂ O ₄ -C nanorods	500	863/200th	1
NiCo ₂ O ₄ @C/carbon cloth	500	807/100th	2
composite			
NiCo ₂ O ₄ flower-like structure	100	939/60th	3
NiCo ₂ O ₄ dried plum-like spheres	100	801/50th	4
NiCo ₂ O ₄ nanoplates on RGO	100	816/70th	5
NiCo ₂ O ₄ nanorods	100	856/100th	6
This work	500	1024/200th	
	100	998/100th	

References

- L. Peng, H. Zhang, Y. Bai, J. Yang and Y. Wang, J. Mater. Chem. A, 2015, 3, 22094-22101.
- K. Wang, Y. Huang, M. Wang, M. Yu, Y. Zhu and J. Wu, *Carbon*, 2017, 125, 375-383.
- 3 L. Li, Y. Cheah, Y. Ko, P. Teh, G. Wee, C. Wong, S. Peng and M. Srinivasan, J. Mater. Chem. A, 2013, 1, 10935-10941.
- 4 T. Li, X. Li, Z. Wang, H. Guo and Y. Li, *J. Mater. Chem. A*, 2015, **3**, 11970-11975.
- 5 Y. Chen, M. Zhuo, J. Deng, Z. Xu, Q. Li and T. Wang, J. Mater. Chem. A, 2014, 2, 4449-4456.
- 6 F. Fu, J. Li, Y. Yao, X. Qin, Y. Dou, H. Wang, J. Tsui, K. Y. Chan and M. Shao, ACS Appl. Mater. Interfaces, 2017, 9, 16194-16201.