Water stable oxalate-based coordination polymers with in situ generated cyclic dipeptides showing high proton conductivity

Jingyu Shi,^{*a*} Jing Li,^{*a*} Hongmei Zeng,^{*a*} Guohong Zou,^{**a*} Qinghua Zhang^{*b*} and Zhien Lin^{**a*}

^a College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

^b Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang

621900, P. R. China.

* To whom correspondence should be addressed. Tel: +86-28-85412284. E-mail: zough@scu.edu.cn (G. Zou); zhienlin@scu.edu.cn (Z. Lin)

Physical measurements:

IR spectra (KBr pellets) were recorded on a Nicolet Impact 410 FTIR spectrometer. Powder X-ray diffraction (XRD) data were obtained using a Shimazu XRD-6100 diffractometer with Cu-K α radiation ($\lambda = 1.5418$ Å). The thermogravimetric analyses were performed on a Netzsch STA 449c analyzer in a flow of N₂ with a heating rate of 10 °C/min. Magnetic measurement was performed on the Quantum Design SQUID MPMS XL-7 magnetometer in a magnetic field of 1000 Oe in the temperature range of 2-300 K. Single crystal X-ray diffraction data were collected on a New Gemini, Dual, Cu at zero, EosS2 diffractometer at room temperature. The crystal structures were solved by direct methods. The structures were refined on F^2 by full-matrix least-squares methods using the SHELXTL program package.¹ Alternating current impedance measurements were carried out with a Solartron SI 1260 impedance/gain-phase analyzer over the frequency range from 0.1 Hz to 10 MHz with an applied voltage of 10 mV. The relative humidity was controlled by a STIK Corp. CIHI-150B incubator. The sample was pressed to form a cylindrical pellet of crystalline powder sample (~2 mm thickness \times 5 mm ϕ) coated with C-pressed electrodes. Two silver electrodes were attached to both sides of pellet to form four end terminals (quasi-four-probe method).

Reference

1. G. M. Sheldrick, Acta Cryst., Sect. A, 2008, 64, 112.

D-H…Aa	d(D-H) (Å)	$d(H\cdots A)$ (Å)	$d(D^{\dots}A)(\text{\AA})$	<(DHA) (deg)
N1-H1…O2#1	0.86	2.16	2.870(3)	139.2
N2-H2···O3	0.86	1.91	2.768(3)	174.8
N3-H3…O4	0.86	2.15	2.993(3)	166.4
N4-H4…O5#2	0.86	2.27	2.872(3)	127.0
N4-H4…O13#3	0.86	2.28	3.004(3)	142.4
N5-H5…O10	0.86	2.14	2.753(3)	127.9
N6-H6…O7#4	0.86	2.09	2.947(3)	175.8

Table S1. Hydrogen bond information for SCU-63

^a Symmetry transformations used to generate equivalent atoms: #1 -1+X,1+Y,+Z; #2 2-

X,1-Y,1-Z; #3 1-X,1-Y,1-Z; #4 1-X,2-Y,1-Z.

Fig. S1. ORTEP plot of the asymmetric unit of SCU-63, showing the labeling scheme and the 50% probability displacement ellipsoid.

Fig. S2. ORTEP plot of the asymmetric unit of SCU-66, showing the labeling scheme and the 50% probability displacement ellipsoid.

Fig. S3. Experimental and simulated powder XRD patterns of SCU-63: (a) Simulated; (b) as-synthesized; (c) after impedance measurements.

Fig. S4. Experimental and simulated powder XRD patterns of SCU-66 : (a) Simulated; (b) as-synthesized; (c) after impedance measurements.

Fig. S5. IR spectrum of SCU-63.

Fig. S6. IR spectrum of SCU-66.

Fig. S8. TGA curve of SCU-66.

Fig. S9. Nyquist plot of SCU-63 at different temperature under 98% relative humidity. The conductivity is 1.7×10^{-3} S·cm⁻¹ (40 °C), 2.2×10^{-3} S·cm⁻¹ (50 °C), 2.5×10^{-3} S·cm⁻¹ (55 °C), 2.7×10^{-3} S·cm⁻¹ (60 °C), 2.8×10^{-3} S·cm⁻¹ (65 °C), 3.1×10^{-3} S·cm⁻¹ (70 °C), 3.4×10^{-3} S·cm⁻¹ (75 °C), 3.8×10^{-3} S·cm⁻¹ (80 °C), and 4.2×10^{-3} S·cm⁻¹ (85 °C) for SCU-63.

Fig. S10. Nyquist plot of SCU-66 at different temperature under 98% relative humidity. The conductivity is 3.1×10^{-4} S·cm⁻¹ (40 °C), 6.2×10^{-4} S·cm⁻¹ (55 °C), 9.9×10^{-4} S·cm⁻¹ (70 °C), and 1.3×10^{-3} S·cm⁻¹ (85 °C) for SCU-66.