Electronic Supplementary Information (ESI) for

Enhancement of magnetic relaxation properties with 3d diamagnetic cations in [Zn^{II}Ln^{III}] and [Ni^{II}Ln^{III}], Ln^{III} = Kramers lanthanides.

Júlia Mayans,^a Queral Saez,^a Mercè Font-Bardia,^b Albert Escuer,^{*,a}

^a Departament de Química Inorgànica i Orgànica, Secció Inorgànica and Institut de Nanociència i Nanotecnologia (IN²UB), Universitat de Barcelona, Martí i Franqués 1-11, Barcelona-08028, Spain.

^b Departament de Mineralogia, Cristal·lografia i Dipòsits Minerals, Universitat de Barcelona, Martí Franqués s/n, 08028 Barcelona (Spain) and Unitat de Difracció de R-X. Centre Científic i Tecnològic de la Universitat de Barcelona (CCiTUB), Solé i Sabarís 1-3. 08028 Barcelona.

Parameter	1RR	155
Formula	$C_{30}H_{26}EuN_{5}NiO_{13}$	$C_{30}H_{26}EuN_5NiO_{13}$
FW / g mol ⁻¹	875.23	875.23
Crystal system	Monoclinic	Monoclinic
Space group	<i>C</i> 2	C2
<i>a</i> / Å	19.125(1)	19.098(1)
<i>b</i> / Å	15.5700(8)	15.5383(7)
<i>c</i> / Å	22.084(1)	22.039(1)
α / °	90	90
β/°	99.096(2)	99.059(2)
γ / °	90	90
$V/\text{\AA}^3$	6493.4(6)	6458.5(6)
Ζ	8	8
<i>T</i> / K	100.0(2)	100.0(2)
$ ho_{ m calc}$ / g cm ⁻³	1.791	1.800
μ / mm ⁻¹	2.569	2.583
heta range / °	2.016 - 30.603	2.160 - 26.448
Index ranges	-27 ≤ h ≤ 27	$-23 \le h \le 23$
	$-22 \leq k \leq 22$	$-19 \le k \le 18$
	-31 ≤ <i>l</i> ≤ 31	$-27 \le l \le 27$
Collected reflections	98906	40759
Independent reflections	19717 (<i>R</i> _{int} = 0.0700)	13171 (<i>R</i> _{int} = 0.0422)
Flack parameter	0.13(2)	0.01(2)
Final $R^{b,c}$ indices	<i>R</i> 1 = 0.0387	R1 = 0.0313
[1~20(1)]	w <i>R</i> 2 = 0.0991	wR2 = 0.0714
$(\Delta \rho)_{\rm max,min}$ / e Å ⁻³	1.956, -1.203	1.038, -0.959

 Table S1. Crystallographic collection data for complexes 1*RR* and 1*SS*.

Parameter	2 <i>RR</i>	2 <i>SS</i>	2 <i>SS</i> -b	2SS-c
Formula	$C_{32}H_{34}EuN_5O_{15}Zn$	$C_{32}H_{34}EuN_5O_{15}Zn$	$C_{63}H_{64}Eu_2N_{10}O_{29}Zn_2$	$C_{30}H_{30}EuN_5O_{15}Zn$
FW / g mol ⁻¹	945.97	945.97	1859.90	917.92
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P21	P21	P21	P21
<i>a</i> / Å	9.2811(4)	9.2850(6)	9.209(1)	9.062(1)
<i>b</i> / Å	16.2336(8)	16.239(1)	16.418(3)	17.159(2)
<i>c</i> / Å	23.407(1)	23.453(2)	23.140(4)	22.414(2)
α / °	90	90	90	90
β/°	95.232(2)	95.284(2)	95.496(6)	97.001(4)
γ / °	90	90	90	90
$V/~{ m \AA}^3$	3512.0(3)	3521.2(4)	3482	3459.1(6)
Ζ	4	4	2	4
T / \mathbf{K}	100.0(2)	100.0(2)	100(2)	100.0(2)
$ ho_{ m calc}$ / g cm ⁻³	1.789	1.784	1.774	1.763
μ / mm ⁻¹	2.532	2.526	2.551	2.568
heta range / °	2.151 - 30.592	2.148 - 30.558	2.160-25.943	2.544-30.539
Index ranges	$-13 \le h \le 12$	- 11 ≤ <i>h</i> ≤ 13	-10 ≤ <i>h</i> ≤ 11	$-12 \le h \le 10$
	-23 ≤ <i>k</i> ≤ 23	$-23 \le k \le 23$	$-20 \le k \le 20$	$-24 \le k \le 23$
	-33 ≤ <i>l</i> ≤ 33	- 33 ≤ <i>l</i> ≤ 33	- 28≤ <i>l</i> ≤ 27	- 31 ≤ <i>l</i> ≤ 31
Coll. Reflections	149772	117630	31197	42189
Indep. Reflections	21530	21475	12529	18446
	$(R_{int} = 0.0682)$	$(R_{int} = 0.0308)$	(R _{int} = 0.0956)	(R _{int} = 0.0592)
Flack parameter	0.015(5)	0.017(9)	0.29(4)	0.14(2)
Final <i>R^{b,c}</i> indices	<i>R</i> 1 = 0.0359	R1 = 0.0281	R1 = 0.0737	<i>R</i> 1 = 0.0435
[<i>I</i> >2σ(<i>I</i>)]	wR2 = 0.0667	wR2 = 0.0662	w R2 = 0.1773	w <i>R</i> 2 = 0.0996
$(\Delta \rho)_{\rm max,min}$ / e Å ⁻³	0.991, -1.374	0.968, -2.201	3.731, -2.214	2.672, -2.547

 Table S2. Crystallographic collection data for 2RR, 2SS, 2SS-b and 2SS-c.

Table S3. SHAPE CShM parameters for the A-molecule of complexes **1***RR* and **2***SS***-c**. The topology for both complexes is intermediate to JSPC-10, SDD-10 and TD-10

	1 <i>RR</i>	2SSc
DP-10 D10h Decagon	36.370	36.223
EPY-10 C9v Enneagonal pyramid	23.701	25.930
OBPY-10 D8h Octagonal bipyramid	16.198	15.675
PPR-10 D5h Pentagonal prism	8.931	11.193
PAPR-10 D5d Pentagonal antiprism	9.812	12.382
JBCCU-10 D4h Bicapped cube J15	9.216	10.237
JBCSAPR-10 D4d Bicapped square antiprism J17	5.134	4.682
JMBIC-10 C2v Metabidiminished icosahedron J62	6.146	7.348
JATDI-10 C3v Augmented tridiminished icosahedron J64	17.626	19.313
JSPC-10 C2v Sphenocorona J87	3.241	3.360
SDD-10 D2 Staggered Dodecahedron (2:6:2)	4.578	3.438
TD-10 C2v Tetradecahedron (2:6:2)	4.219	2.782
HD-10 D4h Hexadecahedron (2:6:2) or (1:4:4:1)	6.119	6.986

Table S4. Selected bond parameters for the A-molecule of 2SS-b.

Eu(1)-O(1)	2.60(2)	Zn(1)-N(1)	2.10(2)
Eu(1)-O(2)	2.41(1)	Zn(1)-N(2)	2.02(2)
Eu(1)-O(3)	2.34(1)	Zn(1)-O(2)	1.96(1)
Eu(1)-O(4)	2.69(2)	Zn(1)-O(3)	2.08(1)
Eu(1)-O(5)	2.48(2)	Zn(1)-O(14)	2.06(2)
Eu(1)-O(6)	2.41(2)	Zn(1)-O(2)-Eu(1)	106.9(6)
Eu(1)-O(8)	2.57(2)	Zn(1)-O(3)-Eu(1)	105.7(6)
Eu(1)-O(9)	2.41(1)	$Zn(1)\cdots Eu(1)$	3.519(3)
Eu(1)-O(11)	2.52(2)		
Eu(1)-O(12)	2.49(2)		

Fig. S1 IR spectra for the for the representative $[Ni^{II}Eu^{III}]$ complexes 1 (left) and $[Zn^{II}Eu^{III}]$ 2 (rigth). The spectra are similar but not identical due to the different conformation of the phenyl rings of the ligands.

Fig. S2 Intermolecular interactions for complex **2***SS*: 1-D arrangement of H-bonds and interchain CH- π (ring) contacts.

Fig. S3 Labelled view of the A-molecule of structure **2***SS***b**. At molecular level is practically identical to the structure of the fresh crystal **2***SS*. The main differences are found in the intermolecular interactions.

Fig. S4 Emission spectrum for the mononuclear precursor [Zn^{II}L]. Inset, the sample under white and UV (400 nm) lamp.

Fig. S5 $\chi_M T$ product vs. Temperature for the [Ni^{III}Ln^{III}] (left) and [Zn^{III}Ln^{III}] compounds (right). Solid lines show the best simulation.

In our opinion the absolute fit values must be assumed with large caution, but allowed us to give a reliable indication about the sign of Δ , profiting that different Δ sign gives clearly different shaped $\chi_{\rm M}T$ vs temperature curves, Fig. S5.²⁷

 $\Delta > 0$ means that the smallest value of M_J corresponds to the lowest energy state, and so, the lowest spin-orbit $\pm M_J$ states ($\pm 1/2$ for Kramers ions) will be the ground one, while the opposite for $\Delta < 0$. Reasonable fits of the experimental data were reproduced for negative \square values for Dy^{III} complexes and positive ones for Ce^{III}, Nd^{III}, Er^{III} and Yb^{III}. Although in low symmetry environment, different M_J values can be mixed, and this is probably the reason why the lanthanide Kramers cations with a large number of M_J mixed states have more discrepancies with the fitting Hamiltonian (Dy^{III} and Er^{III}). The method seems to provide a simple alternative to approach the lowest M_J state.

Fig. S6 Simulated $\chi_{\rm M}T$ plots for a mononuclear Ln^{III} for Δ = +25 cm⁻¹ (solid lines) and Δ = -25 cm⁻¹ (dotted lines).

Fig. S7 AC measurements for the [ZnCe] complex **8** (left) and the [NiNd] complex **4** (right) at variable field. The field that gives the maximum dependence of the ac signal was selected in all cases to perform the complete measurements.

Fig. S8 χ_{M} ' and χ_{M} " vs. *T* plots for the [Ni^{II}Ln^{III}] complexes **3** -7.

Fig. S9 χ_{M} ' and χ_{M} " vs. *T* plots for the [Zn^{II}Ln^{III}] complexes **8** -11. Complex [Zn^{II}Yb^{III}] (12) do not shows ac response.

Fig. S10 Fit of the ac data for complexes 6, 8 and 10 $(\ln(1/(2\pi\omega) = \ln(1/\tau_0) - U_{eff}/(k_{\mathbb{E}}T))$ and for 3, 4, 5, 8 and 11 $(\ln(\chi_{M''}/\chi_{M'}) = \ln(\omega\tau_0) - U_{eff}/(k_{\mathbb{E}}T))$.

Fig. S11 Cole-Cole plots for the [Ni^{II}Ln^{III}] complexes **3** -**7** measured in the temperature range 1.8-4.5K. The solid lines represent the best fit.

Fig. S12. Cole-Cole plots for the $[Zn^{II}Ln^{III}]$ complexes **8** -11. measured in the temperature range 1.8-4.5K. The solid lines represent the best fit except for 10 that are eye guide. Data for complex $[Zn^{II}Er^{III}]$ (11) is not enough to fit the data and complex $[Zn^{II}Yb^{III}]$ (12) do not shows ac response.

Fig. S13 Dependency of the spin-lattice relaxation temperature obtained from Cole-Cole plots under static dc field as τ -1 vs. *T* or ln(τ) vs *T*⁻¹ (inset). The n values for the term BTⁿ lies between 6.5-9.1 for all complexes and in agreement with the calculated values by Arrhenius or Debye methods, τ_0 are comprised between 10⁻⁵-10⁻⁷.