Electronic Supporting Information

Benzimidazolyl terpyridine-Fe²⁺ system and its recognition driven molecular model of a traffic light

Avinash Kumar Sonkar^a, Abhishek Rai^a, Kamini Tripathi^a, Pooja Sharma^b, H. W.

Roesky*^cMichael G.B.Drew^dandLallanMishra*^a

^aDepartment of Chemistry, Institute of Science, Banaras Hindu University, Varanasi - 221005,UP, India, ^bDepartment of Chemistry, Guru Nanak Dev University, Amritsar-143005, Punjab, India ^cInstitute of Inorganic Chemistry, University of Göttingen Tammannstrasse 4, 37077Göttingen, (Germany) ^dDepartment of Chemistry, University of Reading, Whiteknishts, Reading RG6 6AD,UK

E-mail: lmishrabhu@yahoo.com

Scheme S1:Synthetic procedure for BIT.

Fig. S1:IR spectrum of BIT.

Fig. S2:¹H NMR spectrum of **BIT** in DMSO-d₆at room temperature.

Fig. S3:¹³C NMR spectrum of BIT in DMSO-d₆ at room temperature.

Fig. S4:HRMSspectrum of BIT.

Fig. S5:UV-vis spectrum of **BIT** (2.0 x 10^{5} M, DMF-H₂O-acetonitrile, 0.5 : 0.5 : 9, v/v, HEPES buffer, pH 7.2) at room temperature.

Fig. S6:Supramolecular architectures of BIT along a(i), b(ii) and c(iii) crystallographic axes, respectively.

Fig. S7:Changes in (a) UV-vis, (b) Fluorescence spectra and (c) visual colour in solution of **BIT** (2.0 x 10^{-5} M, DMF-H₂O-acetonitrile, 0.5 : 0.5 : 9, v/v, HEPES buffer, pH 7.2)upon the addition of 2 equiv. of different metal ions as their perchlorate salt(1.0×10^{-2} M in H₂O).

.

Fig. S8:Changes in (a) UV-vis, (b) Fluorescence spectra and (c) visual colour in solution of **BIT** (2.0 x 10^{-5} M, DMF-H₂O-acetonitrile, 0.5 : 0.5 : 9, v/v, HEPES buffer, pH 7.2)upon the addition of 10 equiv. of different anions as their TBA salt(1.0 x 10^{-2} M in acetonitrile)

Fig. S9: Job's plot obtained for **BIT**(2.0 x 10^{-5} M,DMF-H₂O-acetonitrile, 0.5 : 0.5 : 9, v/v, HEPES buffer, pH 7.2) on variation of its absorbance vs mole-fraction of Fe²⁺(1.0 x 10^{-3} M in H₂O)at λ_{max} = 579nm (a), F⁻(1.0 x 10^{-2} M in acetonitrile)at λ_{max} = 381 nm (b), and CN⁻(1.0 x 10^{-2} M in acetonitrile)at λ_{max} = 383 nm (c).

Fig. S10: Fitting diagram for the binding of **BIT** with $Fe^{2+}(a)$, F(b) and CN(c) ions obtained using SPECFIT software.

Fig.S11:Graph showing the variation of absorbance of **BIT** ($2.0x10^{-5}$ M, DMF-H₂O-acetonitrile, 0.5 : 0.5 : 9, v/v, HEPES buffer, pH 7.2)vs[Fe²⁺](R^2 = 0.985) at low concentration level used for the determination of detection limit λ_{max} 579nm.

Fig. S12:Graph showing the variation of absorbance **BIT**(2.0×10^{-5} M,DMF-H₂O-acetonitrile, 0.5 : 0.5 : 9, v/v, HEPES buffer, pH 7.2)vs (a) [F](R^2 = 0.986) and (b) [CN](R^2 = 0.992) at low concentration level used for the determination of detection limit at λ_{max} 381 and 383 nm, respectively.

Fig. S13:IR spectrum of complex 1.

Fig. S14: HRMS spectrum of complex 1.

Fig. S15: Partial ¹H NMR spectra of **BIT** before and after the addition of Fe^{2+} (a), F^{-} (b) and CN^{-} (c) ions in DMSOd6.

Fig. S16: Energy level diagrams of **BIT**, [**BIT-F**⁻], [**BIT-CN**⁻], and [Fe(**BIT**)₂]²⁺calculated at DFT level in acetonitrile (using a B3LYP/6-31G** and LANL2DZ basis set).

Fig. S17:¹H NMR spectrum of complex1 recorded in DMSO-d₆ at room temperature.

Fig S18: ¹³C NMR spectrum of complex **1** recorded in DMSO- d_6 at room temperature.

Fig. S19: UV-vis spectrum of complex1 (2.0×10^{-5} M, DMF-H₂O-acetonitrile, 0.5 : 0.5 : 9, v/v, HEPES buffer, pH 7.2) at room temperature.

Fig. S20: Molecular structure (ORTEP Diagram) of complex , [Fe(H-BIT)₂].4 ClO₄ with four hydrogen bonded water molecules at 50% probability level. The perchlorate ions are omitted for clarity.

Fig. S21:Supramolecular architectures of complex1 along a(i) b(ii) and c(iii) crystallographic axes, respectively.

Fig. S22: Changes in (a) UV-vis, (b) Fluorescence spectra and (c) visual colour change of complex1 (2.0×10^{-5} M, DMF-H₂O-acetonitrile, 0.5 : 0.5 : 9, v/v, HEPES buffer, pH 7.2) upon the addition of different nitroaromatics (1.0 x 10^{-2} M in MeOH) along with carboxylate(1.0 x 10^{-2} M in acetonitrile) and phosphate(1.0 x 10^{-2} M in acetonitrile). (1=none, 2=4-nitrobenzene, 3=1,3-dinitrobenzene, 4=4-nitrotoluene, 5= 2,4-dinitrotoluene, 6=DNP (2,6-dinitrophenol),7=phenol, 8=4-nitrophenol(NP)9=2,4,6-trinitrophenol (TNP),10=2,4,6-trinitrotoluene(TNT), 11=4-methoxyphenol(MP), 12=tetrabutylammonium acetate (TBAAc), 13=benzoic acid (BA), 14=tetrabutylammonium phosphate (TBAPO),15=tributylammonium pyrophosphate (TBAPy).

Fig. S23: Graph showing the variation of absorbance for complex $1(2.0 \times 10^{-5} \text{ M}, \text{DMF-H}_2\text{O}-\text{acetonitrile}, 0.5 : 0.5 : 9, v/v, HEPES buffer, pH 7.2)vs [TNP]at low concentration level (<math>R^2 = 0.986$) used for the determination of detection limit at λ_{max} 425nm.

Fig. S24: Job's plotshowing the variation of absorbance of complex 1 at λ_{max} = 425 nm vs mole fraction of TNP.

Fig. S25: Fitting diagram for the binding of complex 1 with TNP obtained using SPECFIT software.

Fig. S26:Representative bar chart showing absorbance changes at λ_{max} =425 nm on the addition of various nitroaromatics (3eq. in H₂O) (purple bars) and in the presence of TNP(red bars)in the solution of complex1 (2.0x10⁻⁵M, DMF-H₂O-acetonitrile, 0.5 : 0.5 : 9,v/v, HEPES buffer, pH 7.2).(1=none, 2=4-nitrobenzene, 3=1,3-dinitrobenzene, 4=4-nitrotoluene, 5= 2,4-dinitrotoluene, 6= 4-methoxyphenol(MP), 7=phenol, 8=4-nitrophenol(NP) 9= tributylammonium pyrophosphate (TBAPy), 10=2,4,6-trinitrotoluene(TNT), 11=DNP (2,6-dinitrophenol), 12=tetrabutylammonium acetate (TBAAc), 13=benzoic acid (BA), 14=tetrabutylammonium phosphate (TBAPO),15=2,4,6-trinitrophenol(TNP))

Fig. S27:Proof-of-concept experiments with complex $1(1.0 \times 10^{-3} \text{ M,DMF-H}_2\text{O-acetonitrile}, 0.5 : 0.5 : 9, v/v, HEPES buffer, pH 7.2) <math>\lambda_{max}$ 425nmfor determination of [TNP](R²=0.99) in water samples.

Fig. S28: Partial ¹H NMR titrations of **1** with 4-nitrophenol (NP) and 2,4-dinitrophenol (DNP) recorded in DMSO, d_6at room temperature.

Fig. S29:HRMS of complex1+TNP.

Fig. S30: The variation of absorbance of [TNP] in the presence (a) and absence (b) of complex $1(2 \times 10^{-5} \text{M}, \text{DMF-H}_2\text{O}-acetonitrile}, 0.5 : 0.5 : 9, v/v$, HEPES buffer, pH 7.2) at λ_{max} 425 nm.

Fig.S31:Changes in absorbance and emission intensity of **1** (2.0×10^{-5} M, DMF-H₂O-acetonitrile, 0.5 : 0.5 : 9, v/v, HEPES buffer, pH 7.2) on additionof12.0 equiv. of F⁻(a,c) and CN⁻(b,d) ions (1.0×10^{-2} M in acetonitrile).

Fig. S32: Partial ¹H NMR titrations of **1** with F(a) and CN(b) ions recorded in DMSO,d₆ at room temperature.

Fig. S33: Representative bar chart showing absorbance changes at λ_{max} =380 nm on the addition of various anions (12eq. in a cetonitrile) (purple bars), in the presence of F⁻(yellow bars) and CN⁻ (green bars) in the solution of complex **1** (2.0x10⁻⁵M in a cetonitrile). (1= none, 2= Cl⁻, 3= Br⁻, 4 = l⁻, 5 = HSO₄⁻, 6= Aco⁻, 7= ClO₄⁻, 8= HPO₄^{2⁻}, 9 = NO₃⁻, 10= F⁻, 11=CN⁻).

Fig. S34: Absorption spectra of **1** showing the changes in its absorbance in the presence of F followed by the addition of CN^{-} ions(**a**) and in the presence of CN^{-} followed by the addition of F^{-} ions(**b**).

Fig. S35: Visual color changes upon mechanical grinding of complex1 (a) separately with TNP (b), F⁻(c) and CN⁻(d)ionsastheir tetrabutyl a mmonium salts.

Fig. S36: Solid state UV-vis spectral changes recorded on the mechanical grinding of complex **1**separately with TNP, tetrabutylammonium salts of F⁻ and CN⁻ ions.

Table S1. Selected Crystallographic Data for BIT, complex 1 and complex 2

Parameters.	BIT	Complex 1	Complex 2
Formula.	C ₂₈ H ₂₅ N ₅ O ₃	C ₅₆ H ₅₂ Cl ₄ FeN ₁₀ O _{22.5}	C ₇₂₅ H ₅₃₅ FeN ₁₈ O _{21.5}
M.	479.53	1422.72	1576.68
Crystal system.	Orthorhombic	Triclinic	Triclinic
Temperature(°K)	296	273	293
Space group.	Pna2 ₁	P-1	P-1
a/Å	19.159(3)	10.8611(5)	13.6844(5)
b/Å	4.1134(6)	17.4221(8)	18.0033(7)
c/Å	30.426(5)	18.0546(8)	28.3883(10)
α(°)	(90)	62.612(1)	101.503(1)
β(°)	(90)	81.047(1)	93.773(1)
γ(°)	(90)	85.646(1)	95.517(1)
V/Å ³	2397.8(6)	2996.4(2)	6795.7(4)
Z	4	2	4
D_c , g cm ⁻³	1.179	1.577	1.541
RefIns.collected/Unique	11917/3883	46277/14978	107375/26653
Data/restraints/Parameters.	3883/1/325	14978/26/897	266531/145/19737
R(int)	0.0304	0.0434	0.0464
Limiting indices	-23<=h(<=23	-14<=h<=14	-18<=h<=18
	-4<=k<=2	-23<=k<=23	-23<=k<=23
	-36<=l<=29	-24<= <=24	-37<=l<=37
arthetarange for data collection(°)	2.48-25.21	2.217-28.377	2.253-26.000
Completeness to ϑ =25.00	99.9	99.9	99.9
Refinement method	Full-matrix, least-	Full-matrix, least-squares	Full-matrix, least-squares
	squares on F^2	on F ²	on F ²
Final Rindices[I>2σ(I)]	$R_1 = 0.0415$	$R_1 = 0.0681$	$R_1 = 0.0682$
	wR ₂ =0.1091	wR ₂ =0.1639	wR ₂ =0.1755
R indices(all data)	<i>R</i> ₁ =0.0638	<i>R</i> ₁ =0.0977	<i>R</i> ₁ =0.0911
	wR ₂ =0.1196	wR ₂ =0.1809	wR ₂ =0.1961
GoF	1.024	1.022	1.035
Residual electron density	0.167,-0.155	1,586, -1.798	1.317, -1.073
e/A ³			

Table S2.Dimensions in the coordination spheres of complexes $1\,\text{and}\,2$

Bond lengths(Å)					
1 2A 2B					
Fe-N11	1.979(3)	1.976(3)	1.982(3)		
Fe-N22	1.877(2)	1.876(3)	1.872(3)		
Fe-N28	1.961(3)	1.983(3)	1.978(3)		
Fe-N51	1.964(3)	1.967(3)	1.973(3)		
Fe-N62	1.876(2)	1.8753)	1.878(3)		
Fe-N68	1.970(3)	1.972(3)	1.969(3)		
Bond Angles(⁰)					
N62-Fe-N22	177.75(11)	178.40(11)	179.48(12)		
N62-Fe-N28	100.25(11)	97.68(11)	98.62(11)		

N22-Fe-N28	80.96(11)	80.90(11)	80.86(11)
N62-Fe-N51	80.75(11)	80.97(10)	80.78(11)
N22-Fe-N51	101.19(11)	98.25(11)	99.19(11)
N28-Fe-N51	89.80(11)	88.8997(11)	93.72(11)
N62-Fe-N68	81.28(11)	80.49(11)	81.05(11)
N22-Fe-N68	96.82(11)	100.29(11)	98.99(11)
N28-Fe-N68	91.40(11)	93.79(10)	90.59(12)
N51-Fe-N68	161.91(11)	161.46(11)	161.76(11)
N62-Fe-N11	97.73(11)	101.03(11)	99.69(11)
N22-Fe-N11	81.07(11)	80.37(11)	80.82(11)
N28-Fe-N11	162.02(11)	161.21(11)	161.69(11)
N51-Fe-N11	93.23(11)	92.28(11)	89.23(11)
N68-Fe-N11	91.18(11)	90.90(11)	92.23(11)

Table S3Hydrogen bond dimensions (A, deg) in BIT, 1 and 2

ВІТ						
D-HA (D= donor, A = acceptor)	D-H	НО	DA	D-HA	symmetry element	
N43-H43 O1W	0.83(2)	2.09(3)	2.917(6)	170(4)		
01W-H1W03W	0.85(3)	2.63(4)	3.050(9)	112(3)	x+1/2, -y-1/2, z	
O2W-H21WN11	0.85(3)	2.02(5)	2.833(7)	161(12)		
02W-H22W03W	0.84(3)	2.63(13)	2.855(11)	97(9)	x+1/2, -y+1/2, z	
O3W- H32WO2W	0.89	2.14	2.855(11)	137	x-1/2, -y+1/2, z	
		Complex	1	1	I	
N36-H36O3W	0.86	1.79	2.644(4)	173		
N43- H43O2W	0.86	1.98	2.820(4)	164		
N83- H83O1W	0.86	1.91	2.749(4)	165		
N76- H76O4W	0.86	2.10	2.865(6)	149		
01W- H11W02W	0.83	2.04	2.858(4)	171	1-x, 1-y, -z	
O2W- H21WO31	0.85	2.14	2.900(4)	149	1+x,y,z	
O2W- H22WO23	0.86	1.89	2.723(7)	163	1-x, 1-y, 1-z	
O2W- H22WO28	0.86	1.95	2.777(14)	159	1-x, 1-y, 1-z	
O3W- H32WO33	0.85	2.57	3.160(5)	128	1-x, -y, 1-z	
O3W- H32WO34	0.85	2.06	2.869(4)	159	1-x, -y, 1-z	
04W- H41W05W	0.94	1.75	2.681(9)	172	x, y, -1+z	
05W- H51W013	0.82	2.49	3.191(9)	144		
O6W-H61WO41	0.82	2.02	2.787(6)	155		
O6W-H62WO22	0.83	2.02	2.839(6)	172		
O6W-H62WO27	0.83	2.41	3.196(11)	159		
Complex 2						
N36A-H36AO92D	0.88	2.03	2.901(5)	171	2-x, -y, 1-z	
N76A-H76AO2W	0.88	1.92	2.768(4)	161		
N36B-H36BO3W	0.88	1.97	2.736(5)	147		
N76B-H76BO1W	0.88	2.01	2.889(6)	176		
N76B-H76BO4W	0.88	1.99	2.766(9)	146		
O2W-H2W1O91E	0.87	1.93	2.792(4)	168	2-x, 1-y, 2-z	
O2W-H2W2O92C	0.87	2.26	2.998(5)	143	1-x, 1-y, 2-z	

^a There were close contacts between other solvent water molecules but as their hydrogen atoms could not be located, they are not listed here.

TableS3: Data of SPECFIT for calculation of binding constant of **BIT** with Fe²⁺ at λ_{max} 579nm.

When $[Fe^{2+}]$: [BIT] = 1:2[PROGRAM] Name = SPECFIT Version = 3.0[FILE] Name = BIT+FE2+.FAC Path = C:\Program Files\SPECFIT\DATA\ Date = 26-Aug-07 Time = 8:43:42 PM Ncomp = 2Nmeas = 16Nwave = 761[FACTOR ANALYSIS] Tolerance = 1.000E-09 Max.Factors = 10Num.Factors = 8 Significant = 4 Eigen Noise = 4.837E-04 Exp't Noise = 4.837E-04# Eigenvalue Square Sum Residual Prediction 1 1.486E+03 9.105E+01 8.648E-02 Data Vector 2 9.079E+01 2.621E-01 4.640E-03 Data Vector 3 1.805E-01 8.163E-02 2.590E-03 Data Vector 4 7.878E-02 2.848E-03 4.837E-04 Data Vector 5 1.240E-03 1.608E-03 3.635E-04 Possibly Data 6 2.796E-04 1.328E-03 3.304E-04 Probably Noise 7 2.075E-04 1.121E-03 3.035E-04 Probably Noise 8 1.660E-04 9.548E-04 2.801E-04 Probably Noise [MODEL] Date = 26-Aug-07 Time = 8:44:04 PM Model = 0Index = 3Function = 1 Species = 3 Params = 3[SPECTRUM] [SPECIES] [COLORED] [FIXED] 100 False False 010 True False 120 True False [PARAMETER] [SPECIES] [FIXED] [ERROR] 100 0.00000E+00 +/-True 0.00000E+00 010 True 0.00000E+00 +/-0.00000E+00 8.89448E+00 +/- 5.06828E-01 120 False

[CONVERGENCE] Iterations = 6 Convergence Limit = 1.000E-04 Convergence Found = 2.223E-05 Marquardt Parameter = 0.0 Sum(Y-y)^2 Residuals = 3.48348E+00 Std. Deviation of Fit(Y) = 1.69150E-02

[STATISTICS] Experimental Noise = 4.837E-04 Relative Error Of Fit = 4.7046% Durbin-Watson Factor = 0.4200 Goodness Of Fit, Chi^2 = 1.223E+03 Durbin-Watson Factor (raw data) = None Goodness Of Fit, Chi^2 (raw data) = None

[COVARIANCE] 4.895E+00

[CORRELATION] 1.000E+00

[END FILE]

TableS4: Data of SPECFIT for calculation of binding constant of **BIT** with F at λ_{max} 381nm.

[F`]:BIT]=1:1 [PROGRAM]
Name = SPECFIT
Version = 3.0
[FILE]
Name = BIT+FFAC
Path = C:\Program Files\SPECFIT\DATA\
Date = 26-Aug-07
Time = 8:55:18 PM
Ncomp = 2
Nmeas = 18
Nwave = 377
[FACTOR ANALYSIS]
Tolerance = 1.000E-09
Max.Factors = 10
Num.Factors = 8
Significant = 4
Eigen Noise = 6.247E-04
Exp't Noise = 6.247E-04

Eigenvalue Square Sum Residual Prediction 1 8.826E+02 4.075E+01 7.749E-02 Data Vector 2 4.071E+01 3.474E-02 2.263E-03 Data Vector 3 2.838E-02 6.363E-03 9.686E-04 Data Vector 4 3.717E-03 2.646E-03 6.247E-04 Data Vector 5 9.044E-04 1.742E-03 5.068E-04 Possibly Data 6 4.292E-04 1.313E-03 4.400E-04 Probably Noise 7 2.587E-04 1.054E-03 3.943E-04 Probably Noise 8 1.667E-04 8.873E-04 3.618E-04 Probably Noise [MODEL] Date = 26-Aug-07 Time = 8:55:43 PM Model = 0Index = 3Function = 1 Species = 3 Params = 3 [SPECIES] [COLORED] [FIXED] [SPECTRUM] 100 False False 010 True False 110True False [SPECIES] [FIXED] [PARAMETER] [ERROR] 0.00000E+00 +/-100 0.00000E+00 True 010 0.00000E+00 +/-0.00000E+00 True 110 False 4.08395E+00 +/-3.37167E-02 [CONVERGENCE] Iterations = 6 Convergence Limit = 1.000E-04 Convergence Found = 1.106E-06 Marquardt Parameter = 0.0 $Sum(Y-y)^2$ Residuals = 2.17449E-01 Std. Deviation of Fit(Y) = 5.66114E-03 [STATISTICS] Experimental Noise = 6.247E-04 Relative Error Of Fit = 1.5348% Durbin-Watson Factor = 1.0779 Goodness Of Fit, Chi² = 8.214E+01 Durbin-Watson Factor (raw data) = None Goodness Of Fit, Chi^2 (raw data) = None [COVARIANCE] 6.517E-03 [CORRELATION] 1.000E+00

[END FILE]

Table S5: Data of SPECFIT for calculation of binding constant of BIT with CN at λ_{max} 383nm.

[CN ⁻]:BIT]=1:1						
[PROGRAM]	Ŧ					
Version = 30	1					
V C151011 - 5.0						
[FILE]						
Name = BIT+CN	IFAC					
Path = C:\Progr	am Files\SPECFI	T\DATA\	١			
Date = 26-Aug-	07					
Time = 8:52:04	PM					
Ncomp = 2						
Nmeas = 17						
NWAVE = 377						
[FACTOR ANAL]	YSIS]					
Tolerance = 1.0	00E-09					
Max.Factors = 1	10					
Num.Factors =	5					
Significant = 3						
Eigen Noise = 9	.985E-04					
Exp't Noise = 9.	985E-04					
# Eigenvalue	Square Sum Re	sidual I	Predictic	on		
1 8.371E+02	3.3/6E+01 /.2	58E-02	Data Ve	ctor		
2 3.373E+U1 2 2 124E_02	2.703E-02 2.07	7E-03 L	Jala veo	tor		
3 2.124E-02 4 3 997F-03	0.387E-03 9.98 2 391E-03 6 11	0F-04 L	Possibly	Data		
5 6.470F-04	1.744F-03 5.21	8F-04 P	Probably	Noise		
0 011102 01			,			
[MODEL]						
Date = 26-Aug-	07					
Time = 8:52:19	PM					
Model = 0						
Index = 3						
Function = 1						
Speares = 3						
Params = 3						
				[SPFC	TRUM	
100	True	נוואנטן	False	[51 20		
010	True		False			
110	True		False			
-						
[SPECIES]	[FIXED]	[PARAN	/IETER]		[ERRO	R]
100	True		0.0000)E+00	+/-	0.00000E+00
010	True		0.0000)E+00	+/-	0.00000E+00
110	False		5.65745	5E+00	+/-	1.98385E-01
	r1					
LUNVERGENC	EJ					

Convergence Limit = 1.000E-04 Convergence Found = 2.235E-05 Marquardt Parameter = 0.0 Sum(Y-y)^2 Residuals = 4.01996E-01 Std. Deviation of Fit(Y) = 7.92044E-03

[STATISTICS] Experimental Noise = 9.985E-04 Relative Error Of Fit = 2.1490% Durbin-Watson Factor = 1.5689 Goodness Of Fit, Chi^2 = 6.292E+01 Durbin-Watson Factor (raw data) = None Goodness Of Fit, Chi^2 (raw data) = None

[COVARIANCE] 3.353E-01

[CORRELATION] 1.000E+00

[END FILE]

TableS6 Selected UV-vis absorption energy transitions at the TD-DFT/B3LYP level for BIT, [BIT+F], [BIT+CN] and

 $[Fe(BIT)_2]^{2+}$.in acetonitrile.

Excited	$\lambda_{ex}(nm)/(eV)$	Oscillator	$\lambda_{exp}(nm)/$	Key transitions	
state		strength(f)	ε _{exp} (M ⁻¹ cm ⁻¹)		
BIT					
S ₉	325/3.8125	0.0404	326/89700	H-4→L+1(2%), H-2→L(37%), H→L+1(58%)	
S ₁₅	287/4.3129	0.3021	287/58500	H-5→L(4%), H-5→L+2(2%), H-2→L(44%), H-	
				2→L+1(16%), H→L+2(29%),	
[BIT +F] ⁻			- -		
S ₅	369/3.3550	0.9281	375/45000	H→L(56%) H-2→L+1(43%)	
S ₁₉	268/4.6230	0.4612	276/58200	H-13→L(2%), H-6→L+1(9%), H-	
				3→L+1(56%), H-2→L+2(7%), H-2→L+3(6%),	
				H→L+4(14%)	
[BIT+CN] ⁻					
\$ ₇	381/3.2478	0.8103	390/43000	H-1→L(87%), H→L(12%)	
S ₂₅	269/4.5979	0.2501	275/58000	$H-2 \rightarrow L+1(3\%), H-1 \rightarrow L+2(2\%), H \rightarrow L+2(36\%),$	
				H-2→L+5(54%)	
[Fe(BIT) ₂] ²⁺					
S ₉	573/2.5324	0.0079	579/40900	$H-2\rightarrow L(15\%), H-2\rightarrow L+1(2\%), H\rightarrow L+1(72\%)$	
S ₆₄	343/3.6091	0.3629	344/82000	H-4→L+4(2%), H-3→L+5(3%), H-	
				1→L+4(43%), H→L+5(45%)	

[TNP] : [Complex 1]=2:1 [PROGRAM] Name = SPECFIT Version = 3.0[FILE] Name = COMPLEX1+TNP NEW.FAC Path = C:\Program Files\SPECFIT\DATA\ Date = 26-Aug-07 Time = 8:59:30 PM Ncomp = 2Nmeas = 17 Nwave = 761[FACTOR ANALYSIS] Tolerance = 1.000E-09 Max.Factors = 10 Num.Factors = 7 Significant = 4 Eigen Noise = 4.488E-04 Exp't Noise = 4.488E-04 # Eigenvalue Square Sum Residual Prediction 1 3.076E+03 5.958E+01 6.787E-02 Data Vector 2 5.906E+01 5.185E-01 6.331E-03 Data Vector 3 3.727E-01 1.458E-01 3.357E-03 Data Vector 4 1.432E-01 2.605E-03 4.488E-04 Data Vector 5 8.228E-04 1.782E-03 3.712E-04 Probably Noise 6 2.714E-04 1.511E-03 3.418E-04 Probably Noise 7 2.114E-04 1.299E-03 3.170E-04 Probably Noise [MODEL] Date = 26-Aug-07 Time = 8:59:56 PM Model = 0Index = 3Function = 1 Species = 3 Params = 3[SPECIES] [COLORED] [FIXED] [SPECTRUM] 100 False False 010 True False 210 True False [SPECIES] [FIXED] [PARAMETER] [ERROR] 100 0.00000E+00 +/-0.00000E+00 True 010 0.00000E+00 +/-True 0.00000E+00 8.51229E+00 +/-210 False 2.43517E-01

TableS7: Data of SPECFIT for calculation of binding constant of complex 1 with TNP at λ_{max} 425nm

[CONVERGENCE] Iterations = 5 Convergence Limit = 1.000E-04 Convergence Found = 2.926E-05 Marquardt Parameter = 0.0 $Sum(Y-y)^2$ Residuals = 5.95728E+01 Std. Deviation of Fit(Y) = 6.78616E-02[STATISTICS] Experimental Noise = 4.488E-04 Relative Error Of Fit = 13.9156% Durbin-Watson Factor = 1.9261 Goodness Of Fit, Chi^2 = 2.286E+04 Durbin-Watson Factor (raw data) = None Goodness Of Fit, Chi^2 (raw data) = None [COVARIANCE] 5.654E-01

[CORRELATION] 1.000E+00

[END FILE]

Table S8: Recovery data of TNP in real sample by complex 1.

S.N.	Samples	TNP added (μM)	TNP found (μM)	% Recovery
1.	Distilled Water	0	0	-
		2	1.96	98%
		4	3.94	98.5%
		6	5.89	98.16%
2.	Tap water	0	0	-
		2	1.82	91%
		4	3.79	94.75%
		6	5.86	97.66%
3.	River water	0	0	-
		2	1.85	92.5%
		4	3.98	99.5%
		6	5.87	97.83%

Table S9: Binding constants and detection limits of BIT and complex 1 in the presence of different analytes.

Receptors	Analytes	Binding Constant	Detection limits	
		(log β)	(ppm)	Concentration (M)
BIT	Fe ²⁺	8.89±0.50	0.42	4.2x10 ⁻⁷
	F	4.08±0.03	5.9	5.9x10 ⁻⁶
	CN	5.65±0.19	7.2	7.2x10 ⁻⁶
Complex 1	TNP	8.51±0.24	0.14	1.4x10 ⁻⁷