Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

> Supplementary Material (ESI) for Dalton Trans. This Journal is (c) The Royal Society of Chemistry 2018

Supporting Information for:

Rh(III)-Catalysed Solvent-Free Hydrodehalogenation of Alkyl Halides by Tertiary Silanes

Naroa Almenara,^a Susan Azpeitia,^a María A. Garralda^{*,a} and Miguel A. Huertos^{*,a,b}

^aFaculty of Chemistry at San Sebastian, University of Basque Country, UPV/EHU, P^o Manuel Lardiazábal 3, 20018 San Sebastian, Spain. ^bIKERBASQUE, Basque Foundation for Science, Bilbao, Spain.

miguelangel.huertos@ehu.es

Table of contents

Dehalogenation of CDCl ₃ using different silanes	S-2
Dehalogenation of different alkyl halides using Et ₃ SiH	S-5
Dehalogenation of polychlorinated pesticides using Et ₃ SiH	S-9
Dehalogenation of CDCl ₃ using Et ₃ SiH at different temperatures	S-17
Dehalogenation of CDCl ₃ using Et ₃ SiD (KIE)	S-21
Dehalogenation of CDBr ₃ using Et ₃ SiH	S-22
Dehalogenation of CDCl ₃ using Et_3SiH and PPh_3	S-23
Dehalogenation of CDCl ₃ using Et_3SiH under H_2 atmosphere	S-25
Control experiment	S-2 7
H/D Exchange experiment	S-28
References	S-30

Dehalogenation of CDCl₃ using different silanes

To a solution of **1** (4.2mg, 0.0025 mmol) in CDCl₃ (0.5 mL) charged in a J. Young NMR tube was added a hydrosilane (Et₃SiH 40 μ L, 0.25 mmol; Me₂PhSiH, 40 μ L, 0.25 mmol; MePh₂SiH 51 μ L, 0.25 mmol; Ph₃SiH, 65.1 mg, 0.25 mmol). The solution was monitored by ¹H NMR at 50 °C, following the disappearance of the hydrosilane resonance and the appearance of new chlorosilane and CHDCl₂.

Figure 1. Dechlorination of CDCl₃ using Et₃SiH. Reaction monitoring by ¹H NMR at 50 °C.

Triethylchlorosilane: ¹H NMR (500 MHz, CDCl₃): δ 1.06 (t, J = 7.8 Hz, 9H), 0.84 (q, J = 7.9 Hz, 6H).

Figure 2. Dechlorination of CDCl₃ using Me₂PhSiH. Reaction monitoring by ¹H NMR at 50 °C.

Dimethylphenylchlorosilane: ¹H NMR (500 MHz, CDCl₃): δ 7.61 (m, 2H), 7.42 (m, 3H), 0.74 (t, d = 1.5 Hz, 6H).

Figure 3. Dechlorination of CDCl₃ using MePh₂SiH. Reaction monitoring by ¹H NMR at 50 °C

Methyldiphenylchlorosilane: ¹H NMR (500 MHz, CDCI₃): δ 7.73 (m, 4H), 7.48 (m, 6H), 1.02 (s, 3H).

Figure 4. Reaction of R₃SiH with CDCl₃ catalysed by 1. Concentration of R₃SiCl vs time.

Dehalogenation of different alkyl halides using Et₃SiH

A Young flask charged with **1** (8.4 mg, 0.05 mmol), Et₃SiH (80 μ L, 0.5 mmol) and the alkyl halides (benzylchloride, 57 μ L, 0.5 mmol; benzylbromide, 60 μ L, 0.5 mmol; tritylchloride, 189 mg, 0.5 mmol; tert-pentylchloride, 61 μ L, 0.5 mmol; tetrachloroethane, 53 μ L, 0.5 mmol) was stirred during 12 h at 60 °C. After this time, CDCl₃ and dichloroethane (10 μ L, 0.0126 mmol, Internal Standard) were added and a ¹H NMR spectra was carried out at room temperature to calculate the conversion.

Figure 5. ¹H NMR spectrum for the reaction of dechlorination of benzyl chloride using Et₃SiH.

Figure 6. ¹H NMR spectrum for the reaction of debromination of benzyl bromide using Et₃SiH.

Figure 7. ¹H NMR spectrum for the reaction of dechlorination of trityl chloride using Et₃SiH.

1.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Figure 8. ¹H NMR spectrum for the reaction of dechlorination of *tert*-pentyl chloride using Et₃SiH.

Dehalogenation of polychlorinated pesticides using Et₃SiH

A Young flask charged with **1**, Et₃SiH and 10 mg of the organochlorines (hexachlorocyclohexane isomers α -, β -, δ -, γ -HCH, 0.035 mmol); dichlorodiphenyldichloroethane isomers (2,4'- and 4,4'-DDD, 0.031 mmol); 4,4'- dichlorodiphenyltrichloroethane (DDT, 0.028 mmol); and methoxychlor, 0.29 mmol) was stirred up to 72 h at temperatures between 70 - 80 °C. After this time, 0.5 mL of CDCl₃ and 2 equivalents of dichloroethane (Internal Standard) were added and a ¹H NMR spectra was carried out at room temperature to calculate the conversion.

Figure 9. ¹H NMR spectrum for the reaction of dechlorination of α -1,2,3,4,5,6-hexachlorocyclohexane using Et₃SiH (50 µL, 0,31 mmol) and 1 with a catalyst charge of 2 mol % (1,16 mg, 6.95 · 10⁻⁴ mmol) at 70 °C.

Figure 10. ¹H NMR spectrum for the reaction of dechlorination of β -1,2,3,4,5,6-hexachlorocyclohexane using Et₃SiH (50 µL, 0,31 mmol) and **1** with a catalyst charge of 2 mol % (1,16 mg, 6.95·10⁻⁴ mmol) at 70 °C.

Figure 11. ¹H NMR spectrum for the reaction of dechlorination of δ -1,2,3,4,5,6-hexachlorocyclohexane using Et₃SiH (50 µL, 0,31 mmol) and 1 with a catalyst charge of 2 mol % (1,16 mg, 6.95·10⁻⁴ mmol) at 70 °C.

Figure 12. ¹H NMR spectrum for the reaction of dechlorination of γ -1,2,3,4,5,6-hexachlorocyclohexane using Et₃SiH (50 µL, 0,31 mmol) and **1** with a catalyst charge of 2 mol % (1,16 mg, 6.95·10⁻⁴ mmol) at 70 °C.

Figure 13. ¹H NMR spectrum for the reaction of dechlorination of 2,4'-dichlorodiphenyldichloroethane (2,4'-DDD) using Et₃SiH (26 μ L, 0,16 mmol) and **1** with a catalyst charge of 2 mol % (1,05 mg, 6.29·10⁻⁴ mmol) at 80 °C.

Figure 14. ¹H NMR spectrum for the reaction of dechlorination of 4,4'-dichlorodiphenyldichloroethane (4,4'-DDD) using Et₃SiH (26 μ L, 0,16 mmol) and **1** with a catalyst charge of 2 mol % (1,05 mg, 6.29·10⁻⁴ mmol) at 80 °C.

Figure 15. ¹H NMR spectrum for the reaction of dechlorination of 4,4'-dichlorodiphenyltrichloroethane (DDT) using Et₃SiH (27 μ L, 0,17 mmol) and **1** with a catalyst charge of 2 mol % (0,94 mg, 5.64 · 10⁻⁴ mmol) at 80 °C.

Figure 16. ¹H NMR spectrum for the reaction of dechlorination of methoxychlor using Et₃SiH (19 μ L, 0,12 mmol) and 1 with a catalyst charge of 2 mol % (0,97 mg, 5.79·10⁻⁴ mmol) at 80 °C.

Dehalogenation of CDCI₃ using Et₃SiH at different temperatures

To a solution of **1** (4.2mg, 0.0025 mmol) in CDCl₃ (0.5 mL) charged in a J. Young NMR tube was added triethylsilane (Et₃SiH 40 μ L, 0.25 mmol). The solution was monitored by ¹H NMR at 40°C, following the disappearance of the hydrosilane resonance and the appearance of new chlorosilane and CHDCl₂. This experiment was repeated at different temperatures (45 °C, 50 °C and 55 °C).

Figure 17. Dechlorination of CDCl₃ using Et₃SiH. Reaction monitoring by ¹H NMR at 40 °C.

Figure 18. Dechlorination of CDCI₃ using Et₃SiH. Reaction monitoring by ¹H NMR at 45 °C.

Figure 19. Dechlorination of CDCl₃ using Et₃SiH. Reaction monitoring by ¹H NMR at 50 °C.

Figure 20. Dechlorination of CDCI₃ using Et₃SiH. Reaction monitoring by ¹H NMR at 55 °C.

Dehalogenation of CDCI₃ using Et₃SiD (KIE)

To a solution of **1** (4.2mg, 0.0025 mmol) in CDCl₃ (0.5 mL) charged in a J. Young NMR tube was added Et₃SiD (40 μ L, 0.25 mmol). The solution was monitored by ¹H NMR at 40°C, following the disappearance of the hydrosilane resonance and the appearance of new chlorosilane

Figure 21. Dechlorination of CDCI₃ using Et₃SiD. Reaction monitoring by ¹H NMR at 40 °C.

Dehalogenation of CDBr₃ using Et₃SiH

To a solution of **1** (4.2mg, 0.0025 mmol) in CDBrl₃ (0.5 mL) charged in a J. Young NMR tube was added a triethylsilane (Et₃SiH 40 μ L, 0.25 mmol). The solution was monitored by ¹H NMR at 40°C, following the disappearance of the hydrosilane resonance and the appearance of new bromosilane.

Figure 22. Debromination of CDBr3 using Et3SiH. Reaction monitoring by ¹H NMR at 40 °C.

Triethylbromosilane: ¹H NMR (500 MHz, CDCI₃): δ 1.00 (t, J= 7.6 Hz, 9H), 0.89 (q, J = 8.7, 7.7 Hz, 6H).

Dehalogenation of CDCI₃ using Et₃SiH and PPh₃

To a solution of **1** (4.2 mg, 0.0025 mmol) and PPh₃ (1 mg, 0.0038 mmol) in CDCl₃ (0.5 mL) charged in a J. Young NMR tube was added Et₃SiH (40 μ L, 0.25 mmol). The solution was monitored by ¹H NMR at 50°C, following the disappearance of the hydrosilane resonance and the appearance of new chlorosilane.

1 mol% 1

Figure 23. Dechlorination of CDCl₃ using Et₃SiH and 1.5 mol% of PPh₃. Reaction monitoring by ¹H NMR at 50 °C.

Supplementary Material (ESI) for Dalton Trans. This Journal is (c) The Royal Society of Chemistry 2018

Figure 24. Concentration of Et₃SiCl vs time and first order plots for the dechlorination of CDCl₃ using Et₃SiH with and without PPh₃.

Dehalogenation of CDCI₃ using Et₃SiH under H₂ atmosphere.

A J. Young NMR tube charged with **1** (4.2 mg, 0.0025 mmol), CDCl₃ (0.5 mL) and Et₃SiH (40 μ L, 0.25 mmol) was placed under 1 atm. of H₂. The solution was monitored by ¹H NMR at 50°C, following the disappearance of the hydrosilane resonance and the appearance of new chlorosilane.

Figure 25. Dechlorination of CDCI₃ using Et₃SiH under 1 atm of H₂. Reaction monitoring by ¹H NMR at 50 °C.

Figure 26. Concentration of Et₃SiCl vs time for the dechlorination of CDCl₃ using Et₃SiH and under H₂ atmosphere.

Control experiment

A solution of **1** (20 mg, 0.012 mmol) in CDCl₃ (5 mL) in a J. Young NMR tube was monitored by ¹H NMR observing that after 16 h *NO REACTION* was observed.

Figure 27. ¹H NMR spectrum of 1 in CDCl₃ after 10 minutes (top) and after 16 hours (bottom). (*) pentane

H/D Exchange experiment

A solution of **1** (20 mg, 0.012 mmol) in CD_2Cl_2 (5 mL) in a J. Young NMR tube was added Et₃SiD (2 µL, 0.012 mmol), after 15 minutes of reaction the ¹H NMR shows the formation of a 20 % of Et₃SiH demonstrating the H/D interchange.

Figure 28. ¹H NMR spectrum (CD₂Cl₂) of **1** in presence of an equivalent of Et₃SiD after 10 minutes to has been prepared (top). ¹H NMR spectrum (CD₂Cl₂) of **1** (bottom).

Figure 29. ¹H NMR spectrum (CD₂Cl₂) of 1.

References

1. S. Azpeitia, M. A. Garralda and M. A. Huertos ChemCatChem, 2017, 9, 1901-1905.