## **Electronic Supplementary Information (ESI)**

## Field-induced slow relaxation of the magnetisation in an anionic heterotetranuclear $[Zn^{II}Re^{IV}_{3}]$ system

Adrián Sanchis-Perucho, Carlos Rojas-Dotti, Nicolás Moliner and José Martínez-Lillo\*

Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, c/ Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.

## **Table of contents**

page

| Synthesis of 1 | 2  |
|----------------|----|
| Table S1       | 2  |
| Figure S1      | 3  |
| Figure S2      | 4  |
| Figure S3      | 5  |
| Figure S4      | 6  |
| Figure S5      | 7  |
| Figure S6      | 8  |
| Figure S7      | 9  |
| Figure S8      | 10 |
| Figure S9      | 11 |
| Figure S10     | 12 |
| Table S2       | 13 |

## Synthesis of 1.

All chemicals were used as received. The precursor  $(NBu_4)_2[ReCl_4(ox)]$  was prepared following the literature procedures indicated in the references No. 24 and 25 of the main text.

A solution of  $(NBu_4)_2[ReCl_4(ox)]$  (202.5 mg, 0.225 mmol) in a isopropanol/MeCN (15 mL, 9:1, v/v) mixture was added to a solution of  $Zn(ClO_4)_2 \cdot 6H_2O$  (27.9 mg, 0.075 mmol) in isopropanol (15 mL) under continuous stirring. The resulting pale green solution was allowed to evaporate at room temperature. Green needles of **1** were grown in one day, were filtered off and washed with cold isopropanol and diethyl ether. Yield: *ca*. 50%. Better crystals of **1** were obtained when a 1:1 Re/Zn molar ratio was used in the synthesis. Anal. Calcd. for C<sub>70</sub>H<sub>144</sub>N<sub>4</sub>O<sub>12</sub>Cl<sub>12</sub>Re<sub>3</sub>Zn (**1**): C, 36.80; H, 6.40; N, 2.45. Found: C, 37.30; H, 7.00; N, 2.50. IR (KBr pellet/cm<sup>-1</sup>): bands associated to the oxalate ligand are observed at 1712m, 1656vs and 812m.

| Compound                                                      | 1                                     |
|---------------------------------------------------------------|---------------------------------------|
| Formula                                                       | $C_{70}H_{144}N_4O_{12}Cl_{12}Re_3Zn$ |
| M <sub>r</sub>                                                | 2283.25                               |
| Crystal system                                                | triclinic                             |
| Space group                                                   | $P\overline{1}$                       |
| a/Å                                                           | 9.813(1)                              |
| $b/ m \AA$                                                    | 19.331(1)                             |
| $c/\text{\AA}$                                                | 25.223(1)                             |
| α/°                                                           | 84.45(1)                              |
| β/°                                                           | 83.08(1)                              |
| $\gamma/^{\circ}$                                             | 81.72(1)                              |
| $V/ Å^3$                                                      | 4684.8(5)                             |
| Ζ                                                             | 2                                     |
| $D_{\rm c}/{\rm g~cm}^{-3}$                                   | 1.619                                 |
| $\mu$ (Mo-K <sub><math>\alpha</math></sub> )/mm <sup>-1</sup> | 4.511                                 |
| Goodness-of-fit on $F^2$                                      | 0.992                                 |
| $R_1 \left[ I > 2\sigma(I) \right]$                           | 0.0195                                |
| $wR_1 [I > 2\sigma(I)]$                                       | 0.0478                                |
| $\Delta  ho_{ m max,\ min}/e.{ m \AA}^{-3}$                   | 2.388 and -0.902                      |

 Table S1. Summary of the crystal data for compound 1.



**Figure S1.** Plot of the simulated (green line) and experimental XRD (red line) patterns profile in the  $2\theta/^{\circ}$  range  $0-40^{\circ}$  for **1**.



**Figure S2.** (a) View along the *a* crystallographic axis of the crystal packing of **1** showing the relative arrangement of the tetra-*n*-butylammonium cations (space-filling model) and the  $[Zn{ReCl_4(\mu-ox)}_3]^{4-}$  anions. For the sake of clarity, only the N(CH<sub>2</sub>)<sub>4</sub> skeleton of the tetra-*n*-butylammonium cations is shown. Colour code: pink, Re; yellow, Zn; green, Cl; red, O; blue, N; white, C; grey, H. (b) Detail of the weak C····Cl interactions between cations and anions in **1** (red dashed lines) with colour code: pink, Re; yellow, Re; yellow, Zn; green, Cl; red, O; blue, N; black, C.



Figure S3. Plot of the variable-field magnetisation *versus* applied field at 2.0 K for 1.



**Figure S4.** One *J* model employed to fit the experimental magnetic susceptibility data of compound **1**, where *J* is the exchange coupling constant for the intramolecular  $\text{Re}^{\text{IV}}$ -  $\text{Re}^{\text{IV}}$  interactions through the oxalate bridges. It is assumed that  $g_{\text{Re}} = g_{\text{Re1}} = g_{\text{Re2}} = g_{\text{Re3}}$  and  $D_{\text{Re}} = D_{\text{Re1}} = D_{\text{Re2}} = D_{\text{Re3}}$ . Colour code: pink, Re; yellow, Zn; green, Cl; red, O; blue, N; white, C.



**Figure S5.** (a) Out-of-phase *ac* susceptibility *versus* temperature plot ( $\chi''_M vs. T$ ) for **1** at four different frequencies (100-1000 Hz range) under a dc field of 1000 G. (b)  $\chi''_M/\chi'_M vs. 1/T$  plot for **1**. The solid lines are the best-fit curves.

(b)



**Figure S6.** (a) Out-of-phase *ac* susceptibility *versus* temperature plot ( $\chi''_{M} vs. T$ ) for **1** at four different frequencies (100-1000 Hz range) under a dc field of 2500 G. (b)  $\chi''_{M}/\chi'_{M} vs. 1/T$  plot for **1**. The solid lines are the best-fit curves.



**Figure S7.** (a) Out-of-phase *ac* susceptibility *versus* temperature plot ( $\chi''_M vs. T$ ) for **1** at four different frequencies (100-1000 Hz range) under a dc field of 5000 G. (b)  $\chi''_M/\chi'_M vs. 1/T$  plot for **1**. The solid lines are the best-fit curves.

(b)



**Figure S8.** Frequency dependence of the in-phase (top) and out-of-phase (bottom) *ac* susceptibility signals for **1** under a dc field of 1000 G.



**Figure S9.** Frequency dependence of the in-phase (top) and out-of phase (bottom) *ac* susceptibility signals for **1** under a dc field of 2500 G.



**Figure S10.** Arrhenius best-fit plots for **1** obtained by using the  $\tau = \tau_o \exp(E^{\#}/k_BT)$  equation [where  $\tau_o$  is the pre-exponential factor,  $\tau$  is the relaxation time,  $E^{\#}$  is the barrier to relaxation of the magnetisation and  $k_B$  is the Boltzmann constant] and the data from the *ac* measurements of the 1000 (top), 2500 (middle) and 5000 G (bottom) magnetic fields.

| H <sub>dc</sub> / G | <i>E<sup>#</sup></i> (K/cm <sup>-1</sup> ) <sup>a</sup> | $	au_{ m o}$ (x 10 <sup>-6</sup> ) <sup>a</sup> / s | <i>E</i> <sup>#</sup> (K/cm <sup>-1</sup> ) <sup>b</sup> | $	au_{ m o}$ (x 10 <sup>-6</sup> ) <sup>b</sup> / s |
|---------------------|---------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|
| 1000                | 3.50 / 2.43                                             | 2.02                                                | 4.03 / 2.80                                              | 3.42                                                |
| 2500                | 3.70 / 2.57                                             | 5.66                                                | 5.00 / 3.48                                              | 2.68                                                |
| 5000                | 3.81 / 2.65                                             | 7.05                                                | 5.84 / 4.06                                              | 2.72                                                |

**Table S2.** Values of  $E^{\#}$  and  $\tau_0$  obtained from different dc applied magnetic fields (H<sub>dc</sub>) and equations (a and b) for **1**.

<sup>a</sup> Values obtained from the  $\chi_{\rm M}''/\chi_{\rm M}' = 2\pi v \tau_o \exp(E^{\#}/k_B T)$  equation

<sup>b</sup> Values obtained from the  $\tau = \tau_o \exp(E^{\#}/k_B T)$  equation