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1 Materials and measurements

All chemicals were commercially available and used as received without further 

purification. Elemental analyses of the C, H, and N were carried out on a Vario EL III 

elementary analyzer. Thermogravimetric analyses (TGA) was performed on a 

METTLER TGA/ SDTA 851 analyzer under nitrogen atmosphere with heating rate of 

10 oC/min from 30 oC to 1000 oC. FT-IR spectra of the synthesized complexes were 

carried out on a Nicolet 5700 FT-IR spectrometer as KBr pellets. Powder X-ray 

power diffraction (XRD) patterns were performed on a Rigaku MultiFlex 

diffractometer at 40 kV, 40 mA for Cu Kα(λ= 1.5406 Å)with a scan speed of 3 

deg/min. X-ray photoelectron spectroscopy (XPS) was performed on the Thermo 

Scientific ESCALab 250Xi using 200 W monochromated Al Kα radiation. The 500 

µm X-ray spot was used for XPS analysis. Typically the hydrocarbon C1s line at 

284.8 eV from adventitious carbon is used for energy referencing. UV-Vis spectra 

were recorded on Horiba FluoroMax-4. Inductively coupled plasma (ICP) 

experiments were performed on Thermo-ICAP6300.

1.1 Synthesis

The ligand H3L was synthesized according to the literature. 1,2

Synthesis of {Eu L (H2O) (DMA)}n (FJU-13-Eu): A mixture of H3L (0.02 mmol) 

and Eu(NO3)2 (0.04 mmol) was dissolved in 8 mL of DMA/MeOH/H2O (1:1:0.5) 

solutions in a glass vial and a small amount of HAc was added to this mixture, and 

heated at 110 oC for 48 hours, then cooled to room temperature. Colorless crystals 

were obtained with 79 % yield based on H3L, separated by filtration, washed with 

water and DMA, and then dried in air. Elemental analysis calcd (%) for 

C27H26EuNO10: C 47.94, H 3.87,N 2.07. Found: C 47.36, H 3.91, N 2.17. IR (KBr, 

cm−1): Fig. 5a): 2915 (mb, γC–H), 1597 (s, γC=O asymmetric),1421 (s, γC=C), 1379 (m, 

γC=O symmetric), 1178 (s, γC–O), 1044 (w), 787 (s), 715 (w), 633 (m), 546 (w).
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Synthesis of {Tb L (H2O) (DMA)}n (FJU-13-Tb): FJU-13-Tb was synthesized by a 

method similar to that of FJU-13-Eu, except that Eu(NO3)3 was replaced by 

Tb(NO3)3 and 110 oC was replaced by 80 oC. Colorless crystals were obtained with 49% 

yield based on H3L. Elemental analysis calcd (%) for C27H26TbNO10: C 47.45, H 

3.83,N 2.05. Found: C 45.99, H 3.75, N 2.13. IR (KBr, cm−1): Fig. S2): 2931 (mb, γC–

H), 1578 (s, γC=O asymmetric),1429 (s, γC=C), 1382 (m, γC=O symmetric), 1159 (s, γC–O), 

1045 (w), 789 (s), 729 (w), 641 (m), 540 (w).

1.2 Luminescent measurements

The as-prepared sample of FJU-13-Eu and FJU-13-Tb (∼0.2 g) was soaked in ∼20 

mL of methanol for 1 h, and then the solvent was decanted. Following the procedure 

of methanol soaking and decanting 10 times, the solvent-exchanged samples were 

activated by vacuum at 120 oC overnight (∼12 h) for the activated FJU-13a-Eu and 

FJU-13a-Tb, respectively. To examine the potential of FJU-13-Eu and FJU-13-Tb 

for sensing metal ions, the grounded powder sample of the MOF (10 mg) was 

immersed in 5 mL of different metal ions aqueous solutions, respectively, which were 

treated by ultrasonication for 0.5 h to form a stable turbid suspension. The 

corresponding fluorescence emission spectra recorded by a Horiba FluoroMax-4 

fluorescence spectrometer. The strongest emission wavelengths for FJU-13a-Eu and 

FJU-13a-Tb were located at 616 nm and 545 nm when excited at 320 nm, 

respectively. 

Studies in the simulated physiological conditions. According to the previous 

literature reports3-4 HEPES (2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid) 

was used as the raw material of the biological solution. The solution (20 mM HEPES 

aqueous buffer solution (pH = 7)) was prepared by adding 476 mg HEPES into 100 

mL water. Then, 10 mg FJU-13a-Eu and FJU-13a-Tb was introduced into 5.00 mL 

Fe3+@HEPES solutions with different concentrations of Fe3+ in the buffered solution 

and then completing ultrasonic agitation for 30 minutes to form a stable turbid 

suspension.
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1.3 Adsorption measurement

After the bulk of the solvent was decanted, the freshly prepared sample of FJU-13-Eu 

and FJU-13-Tb (∼0.12 g) was soaked in CH3OH for 1 hour, and then the solvent was 

decanted. Following the procedure of CH3OH soaking and decanting 10 times, the 

solvent-exchanged samples were activated by vacuum at 120 oC until a pressure of 5 

μm Hg. 77 K N2 and 273 K CO2 adsorption isotherms were measured on 

Micromeritics ASAP 2020 HD88 surface area analyzer for the guest-free FJU-13a-

Eu and FJU-13a-Tb.
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Fig. S1 Powder XRD patterns of FJU-13a-Eu after immersing in aqueous solution 
containing several of metal ions.
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Fig. S2 IR Spectra of FJU-13-Tb.
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Fig. S3 TG curves for compounds FJU-13-Eu and FJU-13-Tb.
In order to identify the thermal stability of the two complexes, the thermogravimetric 

analyses (TGA) have been carried out from 30 to 1000 °C under a N2 atmosphere. 

The TGA curves reveal that they possess similar weight loss processes, hence, only 

the structure of FJU-13-Eu is discussed in detail. The TGA curve of FJU-13-Eu 

shows three weight losses. The first weight loss of 3.2 % from 30 to 153 °C was due 

to lose one coordinated water molecules (calcd 2.7 %). The second weight loss of 6.5 % 

from 153 to 284 °C was attributed to the loss of the one coordinated DMA molecules 

(calcd 6.6 %), and the main frameworks begin to slowly decompose.
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Fig. S4 77 K N2 adsorption (a) and 273 K CO2 adsorption (b) in FJU-13a-Eu and 
FJU-13a-Tb.

The 77 K N2 adsorption and 273 K CO2 isotherms of activated FJU-13-Eu and FJU-

13-Tb were measured, but both of them have low adsorption capability.
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Fig.S5 Concentration-dependent luminescence quenching of FJU-13a-Eu (a) and 
FJU-13a-Tb (b) after adding different concentrations of Fe3+ ions.
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Liquid phase adsorption studies: 30 mg activated FJU-13-Eu and FJU-13-Tb was 

added to 15 mL 1mM Fe3+ aqueous solution respectively. Samples for analyses were 

taken from the reaction suspensions and immediately centrifuged to remove the 

particles. The adsorption of Fe3+ was determined using a UV-Vis spectrometer at the 

maximum absorbance at specified reaction times. The adsorption capacity for Fe3+ on 

MOF is calculated using the following equation: qt=[(C0-Ct)×V]/m, where C0 (mol/L) 

represent the initial concentration of the Fe3+ and Ct (mol/L) represent the 

concentration of Fe3+ at any specified time, V represent solution volume (L), m 

represent the quality of MOF (g).

Fig. S6 Time dependent adsorption capacity of 30 mg of FJU-13a-Eu and FJU-13a-
Tb in 15 mL of Fe3+ aqueous solution, respectively. The adsorption of iron ions by 

two MOFs increases with time, and reach adsorption saturation in about 30 min.
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Fig. S7 Solid line: UV-Vis spectra of aqueous solutions containing 1 mM M(NO3)x 
(M = Ag+, Al3+, Ba2+, Ce3+, Co2+, Cr3+, Cu2+, K+, Mg2+, Ni2+, Zn2+, Fe2+ and Fe3+); 

Dashed line: UV-Vis spectra of dispersed 10 mg FJU-13a-Eu in 5 mL H2O; Dotted 
line: Excitation spectra of FJU-13a-Eu.
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Fig. S8 UV-Vis spectra of aqueous solutions containing different concentration of 
Fe3+.
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Fig. S9 X-ray photo-electron spectrum of FJU-13a-Eu and Fe3+@FJU-13a-Eu.
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Table S1 Observed Fe3+ ion amount in the filtrate solution of MOF FJU-13a-Eu 

before and after the addition of different concentration of Fe(NO3)3 determined by 

ICP (Inductively Coupled Plasma).

Concentration of 

Fe(NO3)3(M)

added to MOF FJU-

13a-Eu

Observed Eu3+ ion 

amount(mg)

in the filtrate solution

Observed Fe3+ ion 

amount(mg)

in the filtrate solution

Observed Fe3+ ion 

amount(mg) in solid

sample

Fe3+@FJU-13a-Eu 

after water washing

0 0.015 0 0

1×10-5 0.0373 0.000288 0.0445

1×10-4 0.013 0.000384 0.083

8×10-4 0.0214 0.0602 0.101

1×10-3 0.0218 0.08416 0.298

(Each 20 mg MOF FJU-13-Eu was activated and immersed in 0 M, 1.00 × 10-5 M , 1.00 × 10-4 M, 

8.00×10-4 and 1.00×10-3 M Fe(NO3)3 aqueous solution, respectively. The filtrate solution was 

examined by ICP to determine the Fe3+ amount. ICP were carried out by Thermo-ICAP6300).
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Table S2 Comparison of the detective sensitivity in various Fe3+ sensors.

Compound medium Stern−Volmer 
constant Ksv(M-1)

detection 
limit

Ref.

FJU-13-Eu water 2.03× 104 1.41 μM This work
FJU-13-Tb water 2.11× 104 1.01 μM This work

Eu(4′-(4-carboxyphenyl)- 2,2′:6′,2″-
terpyridine)3

water 4.1 × 103 - 5

[La(TPT)(DMSO)2]·H2O enthanol 1.36 × 104 - 6
Eu-MOF-LIC-1 DMF 2.87 × 104 - 7

Tb-DSOA water 3.543 × 103 - 8
[H(H2O)8][DyZn4(imdc)4(im)4] DMSO 9.29 × 105 - 9

[Eu(bpda)1.5]H2O}n water 1.25 × 104 0.9 μM 10
[Eu2(FDC)3DMA(H2O)3]·DMA·4.5H2

O
water 1.068 × 104 - 11

{[Eu(L)(BPDC)1/2(NO3)]·H3O}n DMF 5.16 × 104 - 12
BUT-14 water 2.17 × 103 3.8 μM 13
BUT-15 water 1.66 × 104 0.8 μM 14

{[Eu2K2(dcppa)2(H2O)6]·5H2O}n ethanol 4.30 × 104 10−6 M 14
{[Tb(L)(BPDC)1/2(NO3)]·H3O}n DMF 4.30 × 104 - 13

[Eu2(TDC)3(CH3OH)2• (CH3OH)] methanol 3.42 × 103 - 15
[Tb2(TDC)3(CH3OH)2• (CH3OH)] methanol 3.04 × 104 - 16

[Cd2 (H2L)2(H2O)5]
•5H2O•2DMF

isopropanol 2.23 × 104 - 16

Eu3+@MIL-53-COOH (Al) water 5.12 × 103 0.5 μM 17
Eu(atpt)1.5(phen)(H2O) ethanol 7.60 × 103 - 18

Eu4L3 DMF 2.94 × 103 10-5 M 19
[Gd6(L)3(HL)2(H2O)10]·18H2O·x(solvent) water 7.98×102 1.67 ppm 20

{[Cd3(HL)2(H2O)3]·3H2O·2CH3CN}n water 1.04 × 104 9.06 × 10−5M 21
PCN-604 water 8.53 × 103 6.2 µM 22
Tb−MOF water 16590 10−6 M 23
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Table S3 Compare the oxygen content of different MOF for detecting iron ions.

Compound O%a KSV M-1 detection 
limit

ref

Eu−HODA 28.48 2.09×104 6.4 ppb 24
{[Eu2K2(dcppa)2(H2O)6]·5H2O}n 20.24 4.30×104 10−6 M 15

FJU-13-Tb 19.69 2.11×104 1.01 μM This work
FJU-13-Eu 19.56 2.03×104 1.41 μM This work

[Pb3(BPDP)1.5(OOCC6H4COOH)3] 17.66 2.23×104 - 25
{[Cd(5-asba)(bimb)]}n 16.34 1.78×104 - 26

[Pb(BPDP)] 15.66 2.2×104 - 26
534-MOF-Tb 13.09 5.51×103 0.13 mM 27

{[Tb4(OH)4(DSOA)2(H2O)8]·
(H2O)8}n

11.67 3.543×103 - 28

{[Tb(L)(DMA)]·(DMA)·
(0.5H2O)}

10.89 1.912×103 - 29

[Cd(μ6-cpta)2(py)2]n 5.12 3.096×103 0.21 mM 30
[Gd6(L)3(HL)2(H2O)10]·18H2O·x(solv

ent)
4.87 7.98×102 1.67 ppm 21

aoxygen content (%) were calculated from the corresponding exposed oxygen sites in the channels 

or interlayer of the evacuated framework derived from the crystallographic data.
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