Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Tuning the photophysical properties of carboranyl luminophores by *closo-* to *nido-*carborane conversion and application to OFF-ON fluoride sensing

Nguyen Van Nghia,^{a,b} Jihun Oh,^a Surendran Sujith,^a Jaehoon Jung*^a and Min Hyung Lee*^a

^a Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea

^b Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam

Contents

1.	Experimental data	S2
2.	Computational details	S14

Fig. S1. ¹¹B (top), ¹³C (middle), and ¹H (bottom) NMR spectra of *closo*-**OXD1** (* and † from CDCl₃ and CH₂Cl₂, respectively).

Fig. S2. ¹¹B (top), ¹³C (middle), and ¹H (bottom) NMR spectra of *closo*-**OXD2** (* and † from CDCl₃ and *n*-hexane, respectively).

Fig. S3. ¹¹B (top), ¹³C (middle), and ¹H (bottom) NMR spectra of *closo*-DPS1 (* from CDCl₃).

Fig. S4. ¹¹B (top), ¹³C (middle), and ¹H (bottom) NMR spectra of *closo*-DPS2 († from CH₂Cl₂).

Fig. S5. ¹¹B (top), ¹³C (middle), and ¹H (bottom) NMR spectra of *nido*-OXD1 (* from CD₂Cl₂).

Fig. S6. ¹¹B (top), ¹³C (middle), and ¹H (bottom) NMR spectra of *nido*-**OXD2** (* and † from acetone- d_6 and H₂O, respectively).

Fig. S7. ¹¹B (top), ¹³C (middle), and ¹H (bottom) NMR spectra of *nido*-**DPS1** (* and † from acetone- d_6 and H₂O, respectively).

Fig. S8. ¹¹B (top), ¹³C (middle), and ¹H (bottom) NMR spectra of *nido*-**DPS2** (* and † from acetone- d_6 and H₂O, respectively).

	closo-OXD1
formula	$C_{18}H_{30}B_{20}N_2O$
formula weight	506.64
crystal system	Monoclinic
space group	$P2_1/n$
<i>a</i> (Å)	12.56330(10)
<i>b</i> (Å)	12.09970(10)
<i>c</i> (Å)	18.4978(2)
α (°)	90
β (°)	97.7708(6)
$\gamma(^{\circ})$	90
$V(\text{\AA}^3)$	2786.07(4)
Z	4
$ ho_{ m calc} ({ m g} { m cm}^{-3})$	1.208
$\mu (\mathrm{mm}^{-1})$	0.062
<i>F</i> (000)	1040
<i>T</i> (K)	173(2)
hkl range	$-16 \rightarrow +16, -12 \rightarrow +16, -24 \rightarrow +24$
measd reflns	27843
unique reflns [R _{int}]	6868 [0.0327]
reflns used for refinement	6868
refined parameters	370
$R1^{a} (I > 2\sigma(I))$	0.0539
wR2 ^{b} all data	0.1556
GOF on F^2	1.041
$ ho_{ m fin}$ (max/min) (e Å ⁻³)	0.381/-0.336

 Table S1. Crystallographic data and parameters for *closo*-OXD1.

 $\overline{{}^{a} \operatorname{R1} = \sum ||Fo| - |Fc|| / \sum |Fo|. {}^{b} \operatorname{wR2} = \{ \sum w(Fo^{2} - Fc^{2})^{2}] / [\sum w(Fo^{2})^{2}] \}^{1/2}.}$

Fig. S9. PL spectra of (top) *nido*-OXD1-2 and (bottom) *nido*-DPS1-2 in 10 wt%-doped PMMA film.

Fig. S10. Cyclic voltammograms of *closo-/nido***-OXD2** and *closo-/nido***-DPS2** showing reduction (left) and oxidation (right) $(1.0 \times 10^{-3} \text{ M} \text{ in DMF} \text{ except for reduction of$ *nido*-DPS2 (MeCN), scan rate = 100–200 mV/s).

Fig. S11. Spectral change in the fluorescence of *closo*-OXD1 (2×10^{-5} M in THF) in the presence of different amounts of fluoride after heating at 60 °C for 2 h ($\lambda_{ex} = 320$ nm).

Fig. S12. Spectral change in the fluorescence of *closo*-DPS1 (2×10^{-5} M in THF) in the presence of 2 equiv of fluoride at 60 °C for 2 h ($\lambda_{ex} = 320$ nm).

Fig. S13. Frontier molecular orbital diagrams and energies (eV) from DFT calculation (PCM in THF) of *closo*-**OXD1** (left) in the ground state (S_0) and (right) in the lowest singlet excited state (S_1) geometries. The transition energy (in nm) was calculated using the TD-B3LYP method.

	LUMO+3	LUMO+2	LUMO+1
S ₀			
	LUMO	НОМО	
	HOMO-1	HOMO-2	HOMO-3

Fig. S14. Frontier molecular orbitals of *closo*-**OXD1** from IEFPCM-TD-B3LYP calculations (solvent: THF) at the ground state (S_0) optimized geometry (isovalue = 0.02).

	LUMO+3	LUMO+2	LUMO+1
S ₁			
	LUMO	НОМО	
	HOMO-1	HOMO-2	HOMO-3

Fig. S15. Frontier molecular orbitals of *closo*-**OXD1** from IEFPCM-TD-B3LYP calculations (solvent: THF) at the lowest singlet excited state (S_1) optimized geometry (isovalue = 0.02).

			0	0/1 0	5
МО	Energy	OXD	Phenylene	closo-CB	
LUMO+3	-0.85	0.15	92.18	7.67	
LUMO+2	-0.87	0.41	89.96	9.63	
LUMO+1	-1.58	23.16	59.69	17.15	
LUMO	-2.24	32.60	58.10	9.29	
НОМО	-6.59	37.55	56.60	5.85	
HOMO-1	-7.58	1.67	93.34	4.99	
HOMO-2	-7.60	0.11	98.71	1.19	
HOMO-3	-7.62	4.15	83.73	12.13	

Table S2. Molecular orbital energies (in eV) and contributions of moieties (in %) for *closo*-**OXD1** from IEFPCM-B3LYP calculations (solvent: THF) at the ground state (S_0) optimized geometry.

Table S3. Molecular orbital energies (in eV) and contributions of moieties (in %) for *closo*-**OXD1** from IEFPCM-TD-B3LYP calculations (solvent: THF) at the lowest singlet excited state (S_1) optimized geometry.

МО	Energy	OXD	Phenylene	closo-CB	
LUMO+3	-0.78	0.15	90.79	9.07	
LUMO+2	-0.81	0.59	87.91	11.50	
LUMO+1	-1.67	26.85	57.12	16.03	
LUMO	-2.63	34.99	56.96	8.05	
HOMO	-6.15	40.98	53.71	5.32	
HOMO-1	-7.56	7.75	77.12	15.13	
HOMO-2	-7.66	0.25	98.36	1.39	
HOMO-3	-7.67	0.21	98.56	1.24	

Transition	$\lambda_{calc.}/nm$	$f_{\text{calc.}}$	Major contribution
$S_0 \rightarrow S_1$	327.5	1.624	HOMO \rightarrow LUMO (99%)
$S_0 \rightarrow S_2$	269.6	0.078	HOMO \rightarrow LUMO+1 (64%),
			HOMO-1 \rightarrow LUMO (26%)
$S_0 \rightarrow S_3$	266.6	0.000	HOMO-2 \rightarrow LUMO (69%),
			HOMO \rightarrow LUMO+3 (21%)
$S_0 \rightarrow S_4$	266.0	0.001	HOMO-1 \rightarrow LUMO (29%),
			HOMO \rightarrow LUMO+1 (25%),
			HOMO-3 \rightarrow LUMO (23%),
			HOMO \rightarrow LUMO+2 (16%)
$S_1 \rightarrow S_0$	407.2	1.789	HOMO \rightarrow LUMO (99%)
	$(364.5)^a$		

Table S4. Computed absorption and emission wavelengths ($\lambda_{calc.}$ in nm) and oscillator strengths ($f_{calc.}$) for *closo*-**OXD1** from IEFPCM-TD-B3LYP calculations at the ground (S₀) and lowest singlet excited state (S₁) optimized geometries

Fig. S16. Frontier molecular orbital diagrams and energies (eV) from DFT calculation (PCM in THF) of *nido*-**OXD1** (left) in the ground state (S_0) and (right) in the lowest singlet excited state (S_1) geometries. The transition energy (in nm) was calculated using the TD-B3LYP method.

	LUMO+3	LUMO+2	LUMO+1
S ₀			
	LUMO	НОМО	
	HOMO-1	HOMO-2	HOMO-3

Fig. S17. Frontier molecular orbitals of *nido*-**OXD1** from IEFPCM-TD-B3LYP calculations (solvent: THF) at the ground state (S_0) optimized geometry (isovalue = 0.02).

S ₁	LUMO+3	LUMO+2	LUMO+1
	LUMO	НОМО	
	HOMO-1	HOMO-2	НОМО-3

Fig. S18. Frontier molecular orbitals of *nido*-**OXD1** from IEFPCM-TD-B3LYP calculations (solvent: THF) at the lowest singlet excited state (S_1) optimized geometry (isovalue = 0.02).

			U (0) I C	2
МО	Energy	OXD	Phenylene	nido-CB	
LUMO+3	0.20	0.41	96.82	2.78	
LUMO+2	0.19	0.11	97.21	2.68	
LUMO+1	-0.44	32.10	61.47	6.43	
LUMO	-1.15	39.46	55.34	5.20	
НОМО	-5.03	6.06	15.91	78.02	
HOMO-1	-5.12	0.50	4.60	94.91	
HOMO-2	-5.55	20.73	40.46	38.81	
HOMO-3	-6.11	3.58	43.81	52.61	

Table S5. Molecular orbital energies (in eV) and contributions of moieties (in %) for *nido*-**OXD1** from IEFPCM-B3LYP calculations (solvent: THF) at the ground state (S_0) optimized geometry.

Table S6. Molecular orbital energies (in eV) and contributions of moieties (in %) for *nido*-**OXD1** from IEFPCM-TD-B3LYP calculations (solvent: THF) at the lowest singlet excited state (S_1) optimized geometry.

МО	Energy	OXD	Phenylene	nido-CB	
LUMO+3	0.20	0.15	96.62	3.23	
LUMO+2	0.18	0.19	96.91	2.90	
LUMO+1	-0.55	33.71	61.32	4.97	
LUMO	-1.46	40.40	55.70	3.90	
HOMO	-4.24	0.21	1.33	98.45	
HOMO-1	-5.08	5.23	12.54	82.23	
HOMO-2	-5.46	27.44	45.92	26.64	
HOMO-3	-6.27	5.63	47.32	47.04	

state (S_1) optimiz	state (S ₁) optimized geometries.						
Transition	$\lambda_{calc.}/nm$	$f_{\text{calc.}}$	Major contribution				
$S_0\!\rightarrow S_1$	367.1	0.930	HOMO \rightarrow LUMO (95%)				
$S_0\!\rightarrow S_2$	351.2	0.028	HOMO-1 \rightarrow LUMO (97%)				
$S_0 \rightarrow S_3$	319.6	0.728	HOMO-2 \rightarrow LUMO (96%)				
$S_0 \rightarrow S_4$	295.9	0.029	HOMO \rightarrow LUMO+1 (93%)				
$S_0 \rightarrow S_5$	290.2	0.094	HOMO-1 \rightarrow LUMO+1 (94%)				
$S_1 \rightarrow S_0$	539.9	0.044	HOMO \rightarrow LUMO (98%)				
	$(423.1)^{a}$						

Table S7. Computed absorption and emission wavelengths ($\lambda_{calc.}$ in nm) and oscillator strengths ($f_{calc.}$) for *nido*-**OXD1** from IEFPCM-TD-B3LYP calculations at the ground (S₀) and lowest singlet excited state (S₁) optimized geometries

Fig. S19. Frontier molecular orbital diagrams and energies (eV) from DFT calculation (PCM in THF) of *closo*-**DPS1** (left) in the ground state (S_0) and (right) in the lowest singlet excited state (S_1) geometries. The transition energy (in nm) was calculated using the TD-B3LYP method.

	LUMO+3	LUMO+2	LUMO+1
S ₀			
	LUMO	НОМО	
	HOMO-1	HOMO-2	HOMO-3

Fig. S20. Frontier molecular orbitals of *closo*-**DPS1** from IEFPCM-TD-B3LYP calculations (solvent: THF) at the ground state (S_0) optimized geometry (isovalue = 0.02).

	LUMO+3	LUMO+2	LUMO+1
S ₁			
	LUMO	НОМО	
	HOMO-1	HOMO-2	НОМО-3

Fig. S21. Frontier molecular orbitals of *closo*-**DPS1** from IEFPCM-TD-B3LYP calculations (solvent: THF) at the lowest singlet excited state (S_1) optimized geometry (isovalue = 0.02).

					-
MO	Energy	Sulfonyl	Phenylene	closo-CB	
LUMO+3	-0.95	0.22	91.12	8.66	
LUMO+2	-1.19	0.57	93.24	6.20	
LUMO+1	-1.41	2.68	70.01	27.32	
LUMO	-2.10	8.82	77.50	13.68	
HOMO	-7.46	5.41	81.39	13.20	
HOMO-1	-7.72	1.20	97.56	1.25	
HOMO-2	-7.81	0.06	98.65	1.29	
HOMO-3	-7.99	3.35	73.78	22.87	

Table S8. Molecular orbital energies (in eV) and contributions of moieties (in %) for *closo*-**DPS1** from IEFPCM-B3LYP calculations (solvent: THF) at the ground state (S₀) optimized geometry.

Table S9. Molecular orbital energies (in eV) and contributions of moieties (in %) for *closo*-**DPS1** from IEFPCM-TD-B3LYP calculations (solvent: THF) at the lowest singlet excited state (S_1) optimized geometry.

МО	Energy	Sulfonyl	Phenylene	closo-CB	
LUMO+3	-0.84	0.10	89.30	10.59	
LUMO+2	-1.20	1.91	91.87	6.22	
LUMO+1	-1.65	2.32	73.00	24.68	
LUMO	-2.54	8.40	79.78	11.82	
HOMO	-7.25	7.32	80.87	11.81	
HOMO-1	-7.83	0.91	96.23	2.86	
HOMO-2	-7.90	3.86	77.17	18.98	
HOMO-3	-7.96	1.88	96.61	1.51	

Transition	$\lambda_{calc.}/nm$	$f_{\text{calc.}}$	Major contribution	
$S_0 \rightarrow S_1$	258.3	0.897	HOMO \rightarrow LUMO (98.5%)	
$S_0\!\rightarrow S_2$	252.9	0.001	HOMO-1 \rightarrow LUMO (77.3%)	
			HOMO \rightarrow LUMO+2 (15.5%)	
$S_0 \rightarrow S_3$	248.2	0.050	HOMO-2 \rightarrow LUMO (77.0%)	
			HOMO \rightarrow LUMO+3 (12.2%)	
$S_0 \rightarrow S_4$	232.7	0.097	HOMO-4 \rightarrow LUMO (97.4%)	
$S_0 \rightarrow S_5$	230.1	0.097	HOMO-3 \rightarrow LUMO (87.6%)	
$S_1 \rightarrow S_0$	298.4	0.646	HOMO \rightarrow LUMO (98.9%)	
	$(258.2)^{a}$			

Table S10. Computed absorption and emission wavelengths ($\lambda_{calc.}$ in nm) and oscillator strengths ($f_{calc.}$) for *closo*-**DPS1** from IEFPCM-TD-B3LYP calculations at the ground (S₀) and lowest singlet excited state (S₁) optimized geometries

Fig. S22. Frontier molecular orbital diagrams and energies (eV) from DFT calculation (PCM in THF) of *nido*-**DPS1** (left) in the ground state (S_0) and (right) in the lowest singlet excited state (S_1) geometries. The transition energy (in nm) was calculated using the TD-B3LYP method.

	LUMO+3	LUMO+2	LUMO+1
S ₀			
	LUMO	НОМО	
	HOMO-1	HOMO-2	HOMO-3

Fig. S23. Frontier molecular orbitals of *nido*-**DPS1** from IEFPCM-TD-B3LYP calculations (solvent: THF) at the ground state (S_0) optimized geometry (isovalue = 0.02).

	LUMO+3	LUMO+2	LUMO+1
S ₁			
	LUMO	НОМО	
	Contraction of the second seco		
	HOMO-1	HOMO-2	НОМО-3

Fig. S24. Frontier molecular orbitals of *nido*-**DPS1** from IEFPCM-TD-B3LYP calculations (solvent: THF) at the lowest singlet excited state (S_1) optimized geometry (isovalue = 0.02).

					-
MO	Energy	Sulfonyl	Phenylene	nido-CB	
LUMO+3	0.19	0.23	97.18	2.59	
LUMO+2	0.01	4.43	84.32	11.25	
LUMO+1	-0.06	0.73	97.01	2.27	
LUMO	-0.82	11.40	80.88	7.72	
HOMO	-5.10	0.24	6.97	92.78	
HOMO-1	-5.13	0.21	3.72	96.06	
HOMO-2	-5.96	1.86	51.45	46.69	
HOMO-3	-6.24	1.65	35.08	63.27	

Table S11. Molecular orbital energies (in eV) and contributions of moieties (in %) for *nido*-**DPS1** from IEFPCM-B3LYP calculations (solvent: THF) at the ground state (S₀) optimized geometry.

Table S12. Molecular orbital energies (in eV) and contributions of moieties (in %) for *nido*-**DPS1** from IEFPCM-TD-B3LYP calculations (solvent: THF) at the lowest singlet excited state (S_1) optimized geometry.

МО	Energy	Sulfonyl	Phenylene	nido-CB	
LUMO+3	0.18	0.18	97.20	2.62	
LUMO+2	-0.07	1.39	96.36	2.24	
LUMO+1	-0.17	4.34	86.93	8.73	
LUMO	-1.24	11.86	82.80	5.33	
HOMO	-4.25	0.01	0.78	99.21	
HOMO-1	-5.12	0.22	4.64	95.14	
HOMO-2	-6.07	3.36	55.06	41.58	
HOMO-3	-6.54	3.01	49.59	47.40	

Transition	$\lambda_{calc.}/nm$	$f_{\text{calc.}}$	Major contribution	
$S_0 \rightarrow S_1$	330.4	0.2416	HOMO \rightarrow LUMO (96.7%)	
$S_0 \rightarrow S_2$	325.4	0.0783	HOMO-1 \rightarrow LUMO (96.9%)	
$S_0 \rightarrow S_3$	278.8	0.0017	HOMO \rightarrow LUMO+1 (80.6%)	
			HOMO-1 \rightarrow LUMO+3 (16.1%)	
$S_0 \rightarrow S_4$	277.1	0.0063	HOMO-1 \rightarrow LUMO+1 (75.0%)	
			HOMO \rightarrow LUMO+3 (22.9%)	
$S_0 \rightarrow S_5$	270.5	0.6668	HOMO-2 \rightarrow LUMO (93.2%)	
$S_1 \rightarrow S_0$	513.6	0.0041	HOMO \rightarrow LUMO (98.1%)	
	(374.2) ^{<i>a</i>}			

Table S13. Computed absorption and emission wavelengths ($\lambda_{calc.}$ in nm) and oscillator strengths ($f_{calc.}$) for *nido*-**DPS1** from IEFPCM-TD-B3LYP calculations at the ground (S₀) and lowest singlet excited state (S₁) optimized geometries