Supporting Information

Hierarchical Cu₂S Nanorods with Different Crystal Phases for

Asymmetrical Supercapacitors and Visible-Light Photocatalysis

Qun Liu,^a Xiaodan Hong, ^a Xin Zhang, ^a Xingyan You, ^a Xin Zhao,^a

Xiangyang Liu, *ab Meidan Ye*a

^aResearch Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China

^bDepartment of Physics, Faculty of Science, National University of Singapore, Singapore

* Corresponding author: <u>mdye@xmu.edu.cn</u>, <u>liuxy@xmu.edu.cn</u>

Keywords: hierarchical structures, Cu₂S nanorods, supercapacitors, visible-light photocatalysis

Figure S1. (a) SEM image and (b) XRD pattern of the Cu(OH)₂ nanowires.

Element Time	6h	12h	24h
Cu (monoclinic)	61.62	57.62	54.40
S (monoclinic)	34.25	40.34	44.56
Other (monoclinic)	4.13	2.04	1.04
Cu (hexagonal)	59.25	58.26	59.34
S (hexagonal)	30.23	32.56	30.14
Other (hexagonal)	10.52	9.18	10.52

Table S1. (a)-(c) the EDS for monoclinic and hexagonal nanorods grown on Cusheets after 6, 12 and 24 hours.

Figure S2. High resolution XPS spectra for the Cu 2p in (a) monoclinic and (b)

hexagonal Cu₂S nanorods.

Figure S3. CV curves of the (a) monoclinic and (b) hexagonal Cu₂S nanorods hydrothermally prepared for 6 h, 12 h, and 24 h, respectively.

Figure S4. (a) CV curves at different scan rates and (b) GCD curves at various current densities of the monoclinic Cu₂S, (c) CV curves at different scan rates and (d) GCD curves at various current densities of the hexagonal Cu₂S.

materials	Specific capacitance (F g ⁻¹)	Ref.
Cu ₂ S	375	Present work
CuS	114	1
CuS	305	2
CuO@MnO ₂	343.9	3
CuS-SDBS	232.4	4
Cu(OH) ₂	217 (mF cm ⁻²)	5
CuO	346	6

Table S2.Comparision of CuX compound.

Figure S5. CV curves with 1000 cycles at 100 mV s⁻¹ of the monoclinic and hexagonal Cu_2S electrodes.

Figure S6. SEM images of the monoclnic and hexagonal Cu₂S films after electrochemical tests for 1000 cycles.

Figure S7. Absorption spectra tracking the photo-degradation of dyes: (a) $H_2O_2 + RhB$, (b) $H_2O_2 + MB$, (c) $Cu_2S + RhB$, (d) $Cu_2S + MB$.

Figure S8. Absorption spectra tracking the photo-degradation of RhB under visible light by different catalysts: the (a-c) monoclinic and (d-f) hexagonal Cu₂S nanorods hydrothermally prepared for 6 h, 12 h, and 24 h, respectively.

Figure S9. Absorption spectra tracking the photo-degradation of MB under visible light by different catalysts: the (a-c) monoclinic and (d-f) hexagonal Cu₂S nanorods hydrothermally prepared for 6 h, 12 h, and 24 h, respectively.

Figure S10. (a) The residual concentration and (b) $\ln(C_0/C_t)$ versus time curves of MB with different catalysts.

Reference

- 1 T. Zhu, B. Xia, L. Zhou and X. Wen Lou, J. Mater. Chem., 2012, 22, 7851.
- 2 Y.-K. Hsu, Y.-C. Chen and Y.-G. Lin, Electrichim. Acta, 2014, **139**, 401-407.
- 3 H. Chen, M. Zhou, T. Wang, F. Li and Y. X. Zhang, J. Mater. Chem. A, 2016,
 4, 10786-10793.
- 4 K.-J. Huang, J.-Z. Zhang and Y. Fan, J. Alloy. Compd. 2015, **625**, 158-163.

- S. Lei, Y. Liu, L. Fei, R. Song, W. Lu, L. Shu, C. L. Mak, Y. Wang and H. Huang, J. Mater. Chem. A, 2016, 4, 14781-14788.
- D. P. Dubal, G. S. Gund, R. Holze and C. D. Lokhande, Journal of Power Sources, 2013, 242, 687-698.