Electronic Supplementary Information for:

Unveiling Reactive Metal Sites in a Pd Pincer MOF: Insights into Lewis Acid and Pore Selective Catalysis

Benjamin R. Reiner, Abebu A. Kassie, Casey R. Wade*

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States

*wade.521@osu.edu

Table of contents:	page
number	
Figure S1. XRF spectrum of 1–PdI.	S2
Figure S2. PXRD patterns of 1–PdI.	S3
Figure S3. ATR-FTIR spectra of 1-PdI (black) and 1-PdBF ₄ (red).	S4
Figure S4. N ₂ adsorption isotherms (77 K) for 1-PdI (black) and 1-PdBF ₄ (red).	S5
Figure S5. DFT differential pore volume plots for 1-PdI (black) and 1-PdBF ₄ (red).	
Figure S6. ¹ H NMR spectrum $(3/1 \text{ CF}_3\text{CO}_2\text{H/C}_6\text{D}_6)$ of 1–PdBF ₄ .	S6
Figure S7. ${}^{31}P{}^{1}H$ NMR spectrum (3/1 CF ₃ CO ₂ H/C ₆ D ₆) of 1–PdBF ₄	S6
Figure S8. ³¹ P{ ¹ H} NMR spectrum ($3/1 \text{ CF}_3\text{CO}_2\text{H/C}_6\text{D}_6$) of 1–PdBF ₄ before	
and after treatment with water.	S7
Figure S9. ${}^{31}P{}^{1}H$ NMR spectrum (3/1 CF ₃ CO ₂ H/C ₆ D ₆) of 'Bu ₄ L-PdBF ₄	S8
Figure S10. ${}^{31}P{}^{1}H$ NMR spectrum (9/1 DCM/C ₆ D ₆) of 'Bu ₄ L-PdBF ₄	S8
Figure S11. ¹ H NMR spectrum of the intramolecular amination of 2 with 1-PdBF ₄	S9
Figure S12. ¹ H NMR spectrum of the intramolecular amination of 2 with 1–PdBF ₄	S10
Figure S13. ¹ H NMR spectrum of the intramolecular amination of 2 with 1–PdBF ₄	S11
Figure S14. ¹ H NMR spectrum of the intramolecular amination of 2 with 1-PdTFA.	S12
Figure S15. ¹ H NMR spectrum of the intramolecular amination of 2 with 1-PdX.	S13
Figure S16. ¹ H NMR spectrum of the intramolecular amination of 2 with 1-PdI	S14
Figure S17. ¹ H NMR spectrum of the intramolecular amination of 2 with 'Bu ₄ L-PdBF ₄	S15
Figure S18. Experimental data collected during the cyclization of 2 with	
pristine and recycled 1-PdBF ₄ .	S16
Figure S19. ¹ H NMR spectrum of the intramolecular amination of 4 with 'Bu ₄ L-PdTFA	S17
Figure S20. ¹ H NMR spectrum of the intramolecular amination of 4 with 1-PdTFA.	S18
Figure S21. GC-FID trace of the intramolecular amination of 4 with 'Bu ₄ L-PdBF ₄	S19
Figure S22. GC-FID trace of the intramolecular amination of 4 with 1–PdBF ₄	S20
Figure S23. GC-FID trace of the carbonyl-ene cyclization of 8 with 1-PdBF ₄ .	S21
Figure S24. GC-FID trace of the carbonyl-ene cyclization of 8 with 1-PdBF ₄ .	S22
Figure S25. GC-FID trace of the carbonyl-ene cyclization of 8 with 1-PdX.	S23
Figure S26. GC-FID trace of the carbonyl-ene cyclization of 8 with 1-PdBF ₄ .	S24
Figure S27. GC-FID trace of the carbonyl-ene cyclization of 8 with 'Bu ₄ L-PdBF ₄	S25
Figure S28. GC-FID trace of the carbonyl-ene cyclization of 8 with 'Bu ₄ L-PdBF ₄	S26
Figure S29. Experimental data collected during the cyclization of	
8 (100 mM) with 1-PdBF ₄	S27
Figure S30. Experimental data collected during the cyclization of	
8 (200 mM) with 1-PdBF ₄	
Details of hot filtration test and ICP-MS analysis.	S28
Figure S31. ¹ H NMR spectrum of an activated sample of 1-PdBF ₄ showing the presence of MeCN	NS28
Figure S32. Solvent suppressed ¹ H NMR spectra of filtrate collected from hot filtration test	

solution.

Figure S2. PXRD patterns of 1–PdI (black), 1–PdBF₄ (red), and 1–PdBF₄ post catalysis (blue) (Cu K α radiation, λ = 1.54 Å).

Figure S4. N₂ adsorption isotherms (77 K) for **1-PdI** (black) and **1-PdBF**₄ (red) after desolvation at 150 °C and $\sim 10^{-4}$ torr for 12 h.

Figure S5. DFT differential pore volume plots for **1-PdI** (black) and **1-PdBF**₄ (red) obtained from the respective N_2 adsorption isotherms (77 K).

S6

Figure S8. ${}^{31}P{}^{1}H$ NMR spectrum (3/1 CF₃CO₂H/C₆D₆) of **1–PdBF₄** before (top) and after treatment with water (bottom).

Figure S11. ¹H NMR spectrum of the intramolecular amination of 2 with $1-PdBF_4$ (5 mol %) (0.012 mmol hexamethylbenzene internal standard).

Figure S13. ¹H NMR spectrum of the intramolecular amination of **2** with **1–PdBF**₄ (0.5 mol %) (0.008) mmol hexamethylbenzene internal standard).

Figure S14. ¹H NMR spectrum of the intramolecular amination of **2** with **1–PdTFA** (5 mol %) (0.006 mmol hexamethylbenzene internal standard).

Figure S15. ¹H NMR spectrum of the intramolecular amination of **2** with **1–PdX** (5 mol %) (0.006 mmol hexamethylbenzene internal standard).

Figure S16. ¹H NMR spectrum of the intramolecular amination of **2** with **1–PdI** (5 mol %) (0.007 mmol hexamethylbenzene internal standard).

Figure S17. ¹H NMR spectrum of the intramolecular amination of **2** with '**Bu**₄L–PdBF₄ (5 mol %) (0.014 mmol hexamethylbenzene internal standard).

Figure S18. Experimental data collected during the cyclization of **2** in the presence of 5 mol % **1– PdBF**₄ using pristine material (black circles) and recycled material (red circles) modeled using a linear regression or single term exponential fit.

Figure S19. ¹H NMR spectrum of the intramolecular amination of 4 with '**Bu**₄L–PdTFA (5 mol %) (0.016 mmol hexamethylbenzene internal standard).

Figure S20. ¹H NMR spectrum of the intramolecular amination of **4** with **1–PdTFA** (5 mol %) (0.006 mmol hexamethylbenzene internal standard).

Substrate	Retention Time (min)	Integration (a.u.)	Response Factor	Yield (%)
2-ethnylaniline	3.052	<1000	0.59	0
indole	4.219	24527992	0.59	44
quinoline	5.423	10819471	0.21	55
Hexamethylbenzene	10.792	28231557	1.00	

Figure S21. GC-FID trace of the intramolecular amination of **4** with ^{*t*}**Bu**₄**L**–**PdBF**₄ (5 mol %) (0.030 mmol hexamethylbenzene internal standard).

Figure S22. G	C-FID ti	race of the	intramolecular	amination	of 4 v	with 1	1–PdBF ₄ (5	mol 9	%) (0.21
mmol hexameth	nylbenze	ene internal	standard).						

5453485

1.00

Hexamethylbenzene

10.792

Substrate	Retention Time (min)	Integration (a.u.)	Response Factor	Yield (%)
Isopulegol	6.982	12274411	1.98	65
Citronellal	7.173	<1000	1.98	0
Other diastereomers	7.197 - 7.827	5796339	1.98	31
Hexamethylbenzene	13.314	2644595	1.00	_

Figure S23. GC-FID trace of the carbonyl-ene cyclization of **8** with **1–PdBF**₄ (10 mol %) (0.013 mmol hexamethylbenzene internal standard). All observed products are racemic.

Substrate	Retention Time (min)	Integration (a.u.)	Response Factor	Yield (%)
Isopulegol	6.982	12958840	1.98	63
Citronellal	7.173	<1000	1.98	0
Other diastereomers	7.197 - 7.827	5911925	1.98	29
Hexamethylbenzene	13.314	7697094	1.00	

Figure S24. GC-FID trace of the carbonyl-ene cyclization of 8 with $1-PdBF_4$ (10 mol %) on the third run (0.039 mmol hexamethylbenzene internal standard). All observed products are racemic.

Substrate	Retention Time (min)	Integration (a.u.)	Response Factor	Yield (%)
Isopulegol	6.982	2,589,013	1.98	16
Citronellal	7.173	13,312,758	1.98	83
Other diastereomers	7.197 - 7.827	<1000	1.98	0
Hexamethylbenzene	13.314	4,223,863	1.00	_

Figure S25. GC-FID trace of the carbonyl-ene cyclization of **8** with **1–PdX** (10 mol %) (0.026 mmol hexamethylbenzene internal standard). All observed products are racemic.

Substrate	Retention Time (min)	Integration (a.u.)	Response Factor	Yield (%)
Isopulegol	6.982	50898793	1.98	60
Citronellal	7.173	3373824	1.98	4
Other diastereomers	7.197 - 7.827	26094676	1.98	31
Hexamethylbenzene	13.314	3021523	1.00	_

Figure S26. GC-FID trace of the carbonyl-ene cyclization of **8** with **1–PdBF**₄ (0.5 mol %) (0.014 mmol hexamethylbenzene internal standard). All observed products are racemic.

Substrate	Retention Time (min)	Integration (a.u.)	Response Factor	Yield (%)
Isopulegol	6.982	12,736,861	1.98	73
Citronellal	7.173	<1000	1.98	0
Other diastereomers	7.197 - 7.827	4915655	1.98	27
Hexamethylbenzene	13.314	4,572,822	1.00	

Figure S27. GC-FID trace of the carbonyl-ene cyclization of **8** with '**Bu**₄L–PdBF₄ (10 mol %) (0.026 mmol hexamethylbenzene internal standard). All observed products are racemic.

Figure S28. GC-FID trace of the carbonyl-ene cyclization of **8** with '**Bu**₄L–PdBF₄ (0.5 mol %) (0.035 mmol hexamethylbenzene internal standard). All observed products are racemic.

Figure S29. Experimental data collected during the cyclization of 8 (100 mM) in the presence of 0.5 mol % 1–PdBF₄ (black circles) modeled with a single term exponential fit (black line).

Figure S30. Experimental data collected during the cyclization of **8** (200 mM) in the presence of 0.5 mol % **1–PdBF**₄.

Figure S31. ¹H NMR spectrum (3/1 CF₃CO₂H/DMSO-*d*₆) of an activated sample of **1–PdBF**₄ showing the presence of MeCN in a ~1:1 ratio with the H₄[L-PdBF₄]⁺ linkers. The overlayed spectrum was spiked with a small amount of MeCN to confirm the assignment.

Details of hot filtration test and ICP-MS analysis. The catalytic intramolecular hydroamination of **2** was set up as described in the Experimental section with **1-PdBF**₄ (5 mol % Pd) as the catalyst. After 30 min of heating at 95 °C, the hot suspension was quickly filtered inti a clean vial using a 0.45 μ m Teflon syringe filter. A small aliquot was removed for ¹H NMR analysis and the remaining filtrate was quickly sealed and heated back to 95 °C. The filtrate was again analyzed by ¹H NMR spectroscopy after heating for 3.5 h. The results are shown below in Figure S32. ICP-MS analysis was performed at the Trace Element Research Laboratory (Ohio State University) using a Perkin-Elmer Sciex ELAN 6000 ICP-MS spectrometer. The organic volatiles

University) using a Perkin-Elmer Sciex ELAN 6000 ICP-MS spectrometer. The organic volatiles were removed in vacuo from the combined filtrate from the hot filtration test. The resulting solid was digested by heating in a mixture of trace metal grade concentrated $HCl_{(aq)}$ and $HNO_{3(aq)}$ and diluted to a final volume of 100 mL. The concentration of Pd was determined with respect to a blank sample and 50 ppb standard solution and found to be ~200 ppb.

Figure S32. Solvent suppressed ¹H NMR spectra (1,4-dioxane) of filtrate collected from hot filtration test. ¹H NMR shows that the reaction had proceeded to ~ 43 % conversion after 30 min and the filtrate showed only a small increase in substrate conversion (~ 46 %) after continued heating for 3.5 h.