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Figure S1. XRF spectrum of 1–PdI after 0 (black), 1 (blue), or 2 (red) soaks with NOBF4 in MeCN 
solution. 
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Figure S2. PXRD patterns of 1–PdI (black), 1–PdBF4 (red), and 1–PdBF4 post catalysis (blue) 
(Cu Kα radiation, λ= 1.54 Å).
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Figure S3. ATR–FTIR spectra of 1–PdI (black) and 1–PdBF4 (red).
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Figure S4. N2 adsorption isotherms (77 K) for 1-PdI (black) and 1-PdBF4 (red) after desolvation 
at 150 °C and ~10-4 torr for 12 h. 

Figure S5. DFT differential pore volume plots for 1-PdI (black) and 1-PdBF4 (red) obtained from 
the respective N2 adsorption isotherms (77 K).
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Figure S6. 1H NMR spectrum (3/1 CF3CO2H/C6D6) of 1–PdBF4.  

Figure S7. 31P{1H} NMR spectrum (3/1 CF3CO2H/C6D6) of 1–PdBF4. 
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Figure S8. 31P{1H} NMR spectrum (3/1 CF3CO2H/C6D6) of 1–PdBF4 before (top) and after 
treatment with water (bottom).
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Figure S9. 31P{1H} NMR spectrum (3/1 CF3CO2H/C6D6) of tBu4L–PdBF4.

Figure S10. 31P{1H} NMR spectrum (9/1 DCM/C6D6) of tBu4L–PdBF4.
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Figure S11. 1H NMR spectrum of the intramolecular amination of 2 with 1–PdBF4 (5 mol %) 
(0.012 mmol hexamethylbenzene internal standard).
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Figure S12. 1H NMR spectrum of the intramolecular amination of 2 with 1–PdBF4 (5 mol %) on 
the fifth run (0.002) mmol hexamethylbenzene internal standard).
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Figure S13. 1H NMR spectrum of the intramolecular amination of 2 with 1–PdBF4 (0.5 mol %) 
(0.008) mmol hexamethylbenzene internal standard).
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Figure S14. 1H NMR spectrum of the intramolecular amination of 2 with 1–PdTFA (5 mol %) 
(0.006 mmol hexamethylbenzene internal standard).
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Figure S15. 1H NMR spectrum of the intramolecular amination of 2 with 1–PdX (5 mol %) (0.006 
mmol hexamethylbenzene internal standard).



S14

Figure S16. 1H NMR spectrum of the intramolecular amination of 2 with 1–PdI (5 mol %) (0.007 
mmol hexamethylbenzene internal standard).



S15

Figure S17. 1H NMR spectrum of the intramolecular amination of 2 with tBu4L–PdBF4 (5 mol 
%) (0.014 mmol hexamethylbenzene internal standard).
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Figure S18. Experimental data collected during the cyclization of 2 in the presence of 5 mol % 1–
PdBF4 using pristine material (black circles) and recycled material (red circles) modeled using a 
linear regression or single term exponential fit.
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Figure S19. 1H NMR spectrum of the intramolecular amination of 4 with tBu4L–PdTFA (5 mol 
%) (0.016 mmol hexamethylbenzene internal standard).
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Figure S20. 1H NMR spectrum of the intramolecular amination of 4 with 1–PdTFA (5 mol %) 
(0.006 mmol hexamethylbenzene internal standard).
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Substrate Retention Time (min) Integration (a.u.) Response Factor Yield (%)
2-ethnylaniline 3.052 <1000 0.59 0
indole 4.219 24527992 0.59 44
quinoline 5.423 10819471 0.21 55
Hexamethylbenzene 10.792 28231557 1.00 —

Figure S21. GC-FID trace of the intramolecular amination of 4 with tBu4L–PdBF4 (5 mol %) 
(0.030 mmol hexamethylbenzene internal standard).
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Substrate Retention Time (min) Integration (a.u.) Response Factor Yield (%)
2-ethnylaniline 3.052 457141 0.59 30
indole 4.219 997034 0.59 65
quinoline 5.423 <1000 0.21 0
Hexamethylbenzene 10.792 5453485 1.00 —

Figure S22. GC-FID trace of the intramolecular amination of 4 with 1–PdBF4 (5 mol %) (0.21 
mmol hexamethylbenzene internal standard).
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Substrate Retention Time (min) Integration (a.u.) Response Factor Yield (%)
Isopulegol 6.982 12274411 1.98 65
Citronellal 7.173 <1000 1.98 0
Other diastereomers 7.197 - 7.827 5796339 1.98 31
Hexamethylbenzene 13.314 2644595 1.00 —

Figure S23. GC-FID trace of the carbonyl-ene cyclization of 8 with 1–PdBF4 (10 mol %) (0.013 
mmol hexamethylbenzene internal standard). All observed products are racemic.
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Substrate Retention Time (min) Integration (a.u.) Response Factor Yield (%)
Isopulegol 6.982 12958840 1.98 63
Citronellal 7.173 <1000 1.98 0
Other diastereomers 7.197 - 7.827 5911925 1.98 29
Hexamethylbenzene 13.314 7697094 1.00 —

Figure S24. GC-FID trace of the carbonyl-ene cyclization of 8 with 1–PdBF4 (10 mol %) on the 
third run (0.039 mmol hexamethylbenzene internal standard). All observed products are racemic.
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Substrate Retention Time (min) Integration (a.u.) Response Factor Yield (%)
Isopulegol 6.982 2,589,013 1.98 16
Citronellal 7.173 13,312,758 1.98 83
Other diastereomers 7.197 - 7.827 <1000 1.98 0
Hexamethylbenzene 13.314 4,223,863 1.00 —

Figure S25. GC-FID trace of the carbonyl-ene cyclization of 8 with 1–PdX (10 mol %) (0.026 
mmol hexamethylbenzene internal standard). All observed products are racemic.
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Substrate Retention Time (min) Integration (a.u.) Response Factor Yield (%)
Isopulegol 6.982 50898793 1.98 60
Citronellal 7.173 3373824 1.98 4
Other diastereomers 7.197 - 7.827 26094676 1.98 31
Hexamethylbenzene 13.314 3021523 1.00 —

Figure S26. GC-FID trace of the carbonyl-ene cyclization of 8 with 1–PdBF4 (0.5 mol %) (0.014 
mmol hexamethylbenzene internal standard). All observed products are racemic.
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Substrate Retention Time (min) Integration (a.u.) Response Factor Yield (%)
Isopulegol 6.982 12,736,861 1.98 73
Citronellal 7.173 <1000 1.98 0
Other diastereomers 7.197 - 7.827 4915655 1.98 27
Hexamethylbenzene 13.314 4,572,822 1.00 —

Figure S27. GC-FID trace of the carbonyl-ene cyclization of 8 with tBu4L–PdBF4 (10 mol %) 
(0.026 mmol hexamethylbenzene internal standard). All observed products are racemic. 
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Substrate Retention Time (min) Integration (a.u.) Response Factor Yield (%)
Isopulegol 6.982 11,768,359 1.98 51
Citronellal 7.173 6,642,876 1.98 29
Other diastereomers 7.197 - 7.827 4834274 1.98 20
Hexamethylbenzene 13.314 2,027,905 1.00 —

Figure S28. GC-FID trace of the carbonyl-ene cyclization of 8 with tBu4L–PdBF4 (0.5 mol %) 
(0.035 mmol hexamethylbenzene internal standard). All observed products are racemic.
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Figure S29. Experimental data collected during the cyclization of 8 (100 mM) in the presence of 
0.5 mol % 1–PdBF4 (black circles) modeled with a single term exponential fit (black line).

Figure S30. Experimental data collected during the cyclization of 8 (200 mM) in the presence of 
0.5 mol % 1–PdBF4.
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Figure S31. 1H NMR spectrum (3/1 CF3CO2H/DMSO-d6) of an activated sample of 1–PdBF4 
showing the presence of MeCN  in a ~1:1 ratio with the H4[L-PdBF4]+ linkers. The overlayed 
spectrum was spiked with a small amount of MeCN to confirm the assignment.
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Details of hot filtration test and ICP-MS analysis. The catalytic intramolecular hydroamination 
of 2 was set up as described in the Experimental section with 1-PdBF4 (5 mol % Pd) as the catalyst. 
After 30 min of heating at 95 °C, the hot suspension was quickly filtered inti a clean vial using a 
0.45 µm Teflon syringe filter. A small aliquot was removed for 1H NMR analysis and the 
remaining filtrate was quickly sealed and heated back to 95 °C. The filtrate was again analyzed by 
1H NMR spectroscopy after heating for 3.5 h. The results are shown below in Figure S32.
ICP-MS analysis was performed at the Trace Element Research Laboratory (Ohio State 
University) using a Perkin-Elmer Sciex ELAN 6000 ICP-MS spectrometer. The organic volatiles 
were removed in vacuo from the combined filtrate from the hot filtration test. The resulting solid 
was digested by heating in a mixture of trace metal grade concentrated HCl(aq) and HNO3(aq) and 
diluted to a final volume of 100 mL. The concentration of Pd was determined with respect to a 
blank sample and 50 ppb standard solution and found to be ~200 ppb.

Figure S32. Solvent suppressed 1H NMR spectra (1,4-dioxane) of filtrate collected from hot 
filtration test. 1H NMR shows that the reaction had proceeded to ~ 43 % conversion after 30 min 
and the filtrate showed only a small increase in substrate conversion (~46 %) after continued 
heating for 3.5 h.


