Supporting Information for:

PbFe(PO₄)F₂ with a 1/6th Bond Depleted Triangular Lattice

Hongcheng Lu,[†] Hiroshi Kageyama^{*,†§}

[†] Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

whibbite@gmail.com; kage@scl.kyoto-u.ac.jp

*Corresponding author Email: kage@scl.kyoto-u.ac.jp; Fax: +81-75-383-2510

Experimental Section

Caution. Hydrofluoric acid is toxic and corrosive! It must be handled with extreme caution and the appropriate protective gear.¹⁻³

Synthesis. Lead (II, III) teroxide (Pb₃O₄, 97%, Wako), iron (II) oxide (FeO, 99.5%, Wako), phosphoric acid (85% H₃PO₄ by weight, Wako), and aqueous hydrofluoric acid (46.0~48.0% HF by weight, Wako) were used as received. Black single crystals of PbFePO₄F₂ were synthesized by adding 0.2 g (0.88 mmol) of Pb₃O₄, 0.1 g (1.39 mmol) of FeO, 0.4 mL (7.67 mmol) of H₃PO₄, 0.8 mL (~22.08 mmol) of 48% aqueous HF to a Teflon [fluoro(ethylenepropylene), FEP] pouch made as described previously;⁴⁻⁷ All reagents were sealed with a sealer in Teflon pouches, and placed into a 125 mL Parr autoclave with a backfill of 45 mL pure water. The autoclave was quickly heated to 200 °C, held at this temperature for 24 hours and cooled to ambient temperature for 30 hours. The single-crystals of PbFePO₄F₂ were recovered in air after vacuum filtration.

Crystallographic Determination. The powder X-ray diffraction pattern (PXRD) was collected on the Bruker D8 ADVANCE using Cu *K*a radiation ($\lambda = 1.54184$ Å) at a 0.1° step size and 1-second dwell time. Single crystal X-Ray diffraction experiments for determining crystal structures of PbFePO₄F₂ were conducted at room temperature (296 K) on a Rigaku R-AXIS RAPID image plate diffractometer with Mo *K* α radiation ($\lambda = 0.71073$ Å). The crystal-to-detector distance was 127 mm and data integrations were made using Rigaku RAPID-AUTO.⁸ Multiscan absorption corrections were applied with Rigaku RAPID-AUTO. The structures were determined by direct methods, completed by Fourier difference syntheses with SIR97,⁹ and refined using SHELXL-2014.¹⁰ No additional

symmetry elements were found using the program PLATON.¹¹ Crystallographic data are reported in Table 1.

Thermo-gravimetric Analysis (TG-DTA). The thermogravimetric measurement for PbFePO₄F₂ was performed in air from ambient temperature to 900 °C on a Rigaku Thermo plus TG8121 using a Pt pan with a heating rate of 1 °C/min. The sample was held at this temperature for two hours and then cooled to room temperature at a rate of 5 °C/min.

Magnetic Characterization. A Quantum Design MPMS-XL superconducting quantum interference device (SQUID) magnetometer was used to collect DC magnetic susceptibility for PbFePO₄F₂ between 2 K and 350 K, and magnetization curves at 2 K and 300 K between 0 and 7 T. The magnetic susceptibility was approximate by $\chi = M/H$ with subtraction of the sample container background and diamagnetic correction derived from Pascal's constants.¹²

Compound formula	PbFePO ₄ F ₂
Formula weight (g·mol ⁻¹)	396.02
Temperature (K)	296(2)
Crystal system	Monoclinic
Space group	$P2_{1}/n$
<i>a</i> (Å)	5.257(2)
<i>b</i> (Å)	12.404(5)
<i>c</i> (Å)	7.098(3)
$eta(\circ)$	102.765(9)
$V(Å^3)$	451.4(3)
Ζ	4
Maximum $\theta(^{\circ})$	27.5
λ (Mo/Cu K α) (Å)	0.71073
$\rho_{\text{cale.}} (\text{g} \cdot \text{cm}^{-3})$	5.827
R _{int}	0.031
R_1	0.037
wR_2	0.070
Goodness-of-fit	1.01

Table 1 Crystal data for $PbFePO_4F_2$.

Table 2 Selected bond lengths, angles and BVS calculations for $PbFePO_4F_2$.

Bond	Bond Length (Å)	s _{ij}	Angle	Degree (°)
		PbFePO ₄ F ₂		
Fe(1)–F(1)	2 × 1.941(5)	2×0.480	F(1)–Fe(1)–F(1)	180
Fe(1)–F(2)	2 × 1.933(5)	2 × 0.491	F(2)–Fe(1)–F(2)	180
Fe(1)–O(1)	2 × 1.985(5)	2×0.542	O(1)-Fe(1)-O(1)	180
		$\Sigma s_{ij} = 3.03$	Fe(1)–F(1)–Fe(2)	127.7
Fe(2)–F(1)	2 × 2.012(5)	2 × 0.397	F(1)-Fe(2)-F(1)	180

Fe(2)–O(3)	2 × 1.978(5)	2 × 0.554	O(3)–Fe(2)–O(3)	180
Fe(2)–O(4)	2 × 2.074(5)	2×0.427	O(4)–Fe(2)–O(4)	180
		$\Sigma s_{ij} = 2.76$	O(1)–P–O(2)	108.7
P–O(1)	1.536(6)	1.202	O(1)–P–O(3)	112.9
P–O(2)	1.533(6)	1.213	O(1)–P–O(4)	109.5
P–O(3)	1.518(6)	1.261	O(2)–P–O(3)	108.2
P–O(4)	1.552(6)	1.152	O(2)–P–O(4)	108.4
		$\Sigma s_{ij} = 4.83$	O(3)–P–O(4)	109.0

Figure S1 Experimental PXRD pattern and simulated pattern for compound $PbFePO_4F_2$ and PXRD pattern for product after TGA at 900 °C.

Figure S2 Coordination for Pb in $PbFePO_4F_2$.

Figure S3 TGA curve of $PbFePO_4F_2$.

Figure S4 (a) Curie Weiss fitting for impurity amount of Curie tail; (b) magnetic susceptibility $\chi(T)$ at 0.1 T(black circle) and 6 T (blue square) for PbFePO₄F₂.

Figure S5 Crystal structure for PbFePO₄F₂ for reviewing (a) interchain interactions pathways; (b) interlayer interactions pathways.

Reference

1. Peters, D.; Miethchen, R. Symptoms and Treatment of Hydrogen Fluoride Injuries. *J. Fluorine Chem.* **1996**, 79, 161-165.

2. Segal, E. B. First Aid for a Unique Acid, HF: A Sequel. *Chem. Health Saf.* **2000**, 7, 18-23.

3. Bertolini, J. C. Hydrofluoric Acid: A Review of Toxicity. *J. Emerg. Med.* **1992**, 10, 163-168.

4. Halasymani, P. S.; Heier, K. R.; Norquist, A. J.; Stern, C. L.; Poeppelmeier, K. R. Composition Space of the $(CdO, 0.5Nb_2O_5)/(HF)_x$ ·Pyridine/H₂O System. Structure and Synthesis of CdNb(py)₄OF₅. *Inorg. Chem.* **1998**, 37, 369-371.

5. Lu, H.; Gautier, R.; Donakowski, M. D.; Liu, Z.; Poeppelmeier, K. R. From Solution to the Solid State: Control of Niobium Oxide–Fluoride $[NbO_xF_y]^{n-}$ Species. *Inorg. Chem.* **2014**, 53, 537-542.

6. Lu, H.; Gautier, R.; Li, Z.-X.; Jie, W.; Liu, Z.; Poeppelmeier, K. R. The Dimeric $[V_2O_2F_8]^{4-}$ Anion: Structural Characterization of a Magnetic Basic-Building-Unit. *J. Solid State Chem.* **2013**, 200, 105-109.

7. Lu, H.; Gautier, R.; Donakowski, M. D.; Fuoco, L.; Liu, Z.; Poeppelmeier, K. R. Specific Chemistry of the Anions: $[TaOF_5]^{2-}$, $[TaF_6]^{-}$, and $[TaF_7]^{2-}$. *Cryst. Growth Des.* **2014**, 14, 844-850.

8. Rigaku Rigaku Corporation: Tokyo, Japan, **2006**.

9. Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. SIR97: A New Tool for Crystal Structure Determination and Refinement. *J. Appl. Crystallogr.* **1999**, 32, 115-119.

10. Sheldrick, G. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112-122.

11. Spek, A. L. *Platon*, Utrecht University, Utrecht, The Netherlands, **2001**.

12. Bain, G. A.; Berry, J. F. Diamagnetic Corrections and Pascal's Constants. *J. Chem. Educ.* **2008**, 85, 532.

13. Lu, H.; Kageyama, H. CsFe₃(SeO₃)₂ F_6 with S = 5/2 Cube Tile Lattice. *Inorg. Chem.* **2018,** 57, 6186-6190.