Catalytic oxidation of alcohols with novel non-heme \mathbf{N}_{4}-tetradentate manganese(II) complexes

Vincent Vermaak, Desmond A. Young, and Andrew J. Swarts.*

Research Focus Area for Chemical Resource Beneficiation, Catalysis \& Synthesis Group, North-WestUniversity, 11 Hofmann Street, Potchefstroom, 2531, South Africa.*Corresponding author, E-mail: andrew.swarts@nwu.ac.za
Supplementary information
S1
General considerations S2
S2 Synthesis of non-heme N_{4}-tetradentate ligands, R, R - and S,S-L1 - L4 S2
S3 Synthesis of non-heme N_{4}-tetradentate $\mathrm{Mn}(\mathrm{II})$-complexes, R, R - and S,S-C1 C4 S11
S4 Screening of non-heme N_{4}-tetradentate $\mathrm{Mn}(\mathrm{II})$-complexes, $\boldsymbol{R}, \boldsymbol{R}$ - and $\mathbf{S}, \mathbf{S}-\mathbf{C 1}$ - C4 S13
S5 Optimisation of catalytic alcohol oxidation reaction parameters S13
S5.1 Optimisation of catalyst load S13
S5.2 Optimisation of oxidant concentration S13
S5.3 Optimisation of co-catalyst concentration S14
S5.4 Optimisation of other parameters: time, temperature, catalyst S14
S6 Evaluating primary and secondary alcohol oxidation with R, R - and S, S-C4 S15
S7 Crystallographic data of complexes R, R - and $S, S-C 4$ S18
S8 Spectral data of ligands, complexes and isolated ketone products S20
References S40

S1 General considerations

All reagents were obtained from commercial sources, i.e. Sigma-Aldrich, Merck and Rochelle Chemicals and used as received. $\mathrm{Mn}(\mathrm{OTf})_{2}$ was stored in a glove box (MBraun) under an Ar atmosphere. Solvents employed in complex synthesis, $\mathrm{Et}_{2} \mathrm{O}$ and DCM , were freshly distilled under a N_{2} atmosphere using $\mathrm{Na} /$ benzophenone and CaH_{2}, respectively. Catalytic experiments were conducted with $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, containing an inhibitor to prevent disproportionation, and stored in a refrigerator when not in use. FT-IR spectra were documented on a BrukerAlpha-P range infrared instrument equipped with an ATR accessory as neat samples in the range of $400 \mathrm{~cm}^{-1}$ to $4000 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a Bruker Ultrashield Plus (600 MHz and 151 MHz , respectively) in 5 mm cylindrical glass tubes. APCI-MS analysis was done on a BrukermicroTOF-Q II mass spectrometer. Magnetic susceptibility measurements were conducted using a Sherwood Scientific MK1 with 4 mm in diameter sample tubes containing 50 mM samples in acetonitrile. Elemental analysis was carried by the University of KwaZulu-Natal (UKZN) Mass Spectrometry Laboratory. Gas chromatographic analysis (GC and GC-MS) were performed on an Agilent 6890 Series GC System with a HP 5 column, 30 m in length, 0.320 mm internal diameter and 0.25 mm film thickness. Rinsing solutions included MeCN (GC) or MeOH and DCM (GC-MS) with N_{2} (GC) or He (GC-MS) serving as the carrier gas and biphenyl as an internal standard.

S2 Synthesis of non-heme \mathbf{N}_{4}-tetradentate ligands, R, R - and S,S-L1 - L4

The resolution of the 1,2-diaminocyclohexane tartrate salt was done according to a previously reported method. ${ }^{1-2}$ Chiral ligands, and R,R- and S,S-L1 - L4 were prepared according to a modified literature procedure. ${ }^{3}$

N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-(R,R)-1,2-diaminocyclohexane (R,R-BPMCN) (R, R-L1)

Scheme S1: Synthesis of ligand R,R-BPMCN (R,R-L1).
R, R-BPMCN-Imine: In a beaker the R, R-DACH salt ($346 \mathrm{mg}, 1.309 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(360$ $\mathrm{mg}, 2.605 \mathrm{mmol}$) was dissolved in water (3 ml) which was added to a 100 ml round bottom flask after complete dissolution. Ethanol (5 ml) was added to the solution. The solution was heated almost to reflux during which 2-pyridinecarboxaldehyde ($275 \mathrm{mg}, 2.567 \mathrm{mmol}$), dissolved in 5 ml of ethanol, was added to the solution. The reaction mixture was refluxed for 6 hours after which 3 ml of water was added. The solution was then cooled down in an ice bath for 30 min . The water layer was extracted with DCM ($3 \times 5 \mathrm{ml}$ portions) after which the organic layer was washed with water ($2 \times 5 \mathrm{ml}$ portions) and saturated NaCl solution (1×5 ml portion). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed. Diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) was added until the entire product dissolved. The solvent was reduced to 10 ml and left overnight in the freezer. The product was isolated as a light yellow crystalline solid (226 $\mathrm{mg}, 60 \%$ yield). FT-IR (ATR) v, $\mathrm{cm}^{-1}: 3061,3008,2928,2862,1643,1567,1468,775 .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 8.49-8.45(\mathrm{~m}, 2 \mathrm{H}), 8.24(\mathrm{~s}, 2 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.57 (td, J = 7.7, $1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.14 (ddd, J = 7.4, $4.8,1.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.46 (dd, J = $6.4,3.4 \mathrm{~Hz}$, 2 H), 1.78 (ddd, J=18.9, 11.2, $2.2 \mathrm{~Hz}, 6 \mathrm{H}$), $1.49-1.39(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta: 161.45,154.63,149.25,136.45,124.48,121.35,73.57,32.74,24.37$.
$\underline{R, R-B P M C N-a m i n e: ~} R, R$-BPMCN-imine ($206 \mathrm{mg}, 0.7045 \mathrm{mmol}$) was dissolved in MeOH (3 $\mathrm{ml})$ and placed in an ice bath for $30 \mathrm{~min} .0 .136 \mathrm{~g}(3.595 \mathrm{mmol}) \mathrm{NaBH}_{4}(136 \mathrm{mg}, 3.595 \mathrm{mmol})$ was added portion-wise over a period of 5 min whilst stirring the solution. The resulting solution was further stirred for 1 hour at ambient temperature after which it was refluxed for 1 hour. After the allotted time the solution cooled to room temperature, DCM (20 ml) was added and the organic layer washed with water ($2 \times 5 \mathrm{ml}$ portions) and saturated NaCl solution ($1 \times 5 \mathrm{ml}$ portion). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed to yield a light yellow oil ($196 \mathrm{~g} ; 94 \%$). FT-IR (ATR, v, cm^{-1}): 3450, 3292, 3059, 3008, 2924, 2853, 1590, 1432, 775. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 8.50-8.40(\mathrm{~m}, 2 \mathrm{H})$, $7.55(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{dd}, J=7.0,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.96$ (d, $J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{dd}, J=5.4,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{dd}, J=10.9$, $2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.14(\mathrm{~m}, 2 \mathrm{H}), 1.07-0.94(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta: 160.71,149.08,136.41,122.32,121.77,61.38,52.53,31.60,25.02$.
$\underline{R, R-L 1: ~ R, R-B P M C N-a m i n e ~(~} 136 \mathrm{mg}, 0.4587 \mathrm{mmol}$) was dissolved in MeCN (5 ml). Whilst stirring, 35% formaldehyde ($436 \mathrm{mg}, 5.082 \mathrm{mmol}$) and glacial acetic acid (0.75 ml) was added to the solution. The solution was stirred for 30 min after which $\mathrm{NaBH}_{4}(73 \mathrm{mg}, 1.923$ mmol) was added portion wise. The reaction mixture was stirred for 72 hours at ambient temperature where after the MeCN was removed in vacuo. $\mathrm{KOH}(2 \mathrm{M})$ was added to the oily residue to raise the pH of the solution above 10. The resulting aqueous solution was
extracted with DCM ($3 \times 10 \mathrm{ml}$ portions), separated and the organic layer washed with $\mathrm{H}_{2} \mathrm{O}$ ($2 \times 10 \mathrm{ml}$ portions) and saturated NaCl solution ($1 \times 10 \mathrm{ml}$ portion). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo to obtain a brown oil ($114 \mathrm{mg} ; 77 \%$). FT-IR (ATR, v, cm¹): 3050, 2930, 2856, 2791, 1591, 1433, 1264, 732. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta: 8.51(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{dd}, J=6.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H})$, $3.94(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 2.00(\mathrm{dd}, J=10.6,2.3 \mathrm{~Hz}$, 2 H), $1.85-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.12(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta: 161.29,148.63,136.32,122.92,121.63,64.53,60.44,36.68,30.96,25.84$, 25.82.

N,N'-dimethyl-N,N'-bis(6-methylpyridyl-2-methyl)-(S,S)-1,2-diaminocyclohexane (S,SBPMCN) (S,S-L1)

Scheme S2: Synthesis of ligand S,S-BPMCN (S,S-L1).
S,S-BPMCN-Imine: Prepared according to the same procedure described for R, R-BPMCNImine. Product isolated as a yellow crystalline solid (228 mg ; 59 \%). FT-IR (ATR, v, cm^{-1}): 3051, 3009, 2928, 2862, 1643, 1468, 1366, 775. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 8.56$ (d, $J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.32(\mathrm{~s}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23$ (dd, J $=7.3,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.58-3.52(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 6 \mathrm{H}), 1.52(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 161.45,154.62,149.25,136.45,124.48,121.35,73.57$, 32.74, 24.37.

S,S-BPMCN-Amine: Prepared according to the same procedure described for R, R-BPMCNAmine. Product isolated as a yellow oil ($187 \mathrm{mg} ; 88 \%$). FT-IR (ATR, v, cm^{-1}): 3288, 3063, 3009, 2925, 2853, 1591, 1432, 1119, 753. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 8.54$ (d, J = $4.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63 (td, $J=7.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.15 (dd, $J=7.1,5.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.04(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{dd}, J=5.4,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.16$ (dd, $J=11.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.76-1.67$ (m, 2H), $1.31-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.08$ (dd, $J=9.9,1.9$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 160.67,149.07,136.43,122.34,121.78,61.37$, 52.51, 31.59, 25.02.

S,S L1: Prepared according to the same procedure described for R, R-L1. Product isolated as a dark yellow oil (0.235 g ; 68.8 \%). FT-IR (ATR, v, cm^{-1}): 3048, 2929, 2855, 2788, 1590, 1433, 1355, 1265, 732. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 8.51$ (d, J = $4.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.64-$ $7.54(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.67$ (dd, $J=5.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.30 (s, 6H), 2.00 (dd, $J=10.6,2.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.82-1.72$ (m, 2H), 1.30 (dd, $J=11.1,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.22-1.12(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta:$ 161.41, 148.63, 136.29, 122.89, 121.60, 64.55, 60.51, 36.66, 25.87, 25.84.

N,N'-dimethyl-N,N'-bis(6-methylpyridyl-2-methyl)-(R, R)-1,2-diaminocyclohexane (R, R BMPMCN) (R, R-L2)

Scheme S3: Synthesis of ligand R,R-BMPMCN (R,R-L2).

R,R-BMPMCN-Imine: Prepared according to the same procedure described for R, R -BPMCN-Imine, employing 6-methyl-2-pyridinecarboxaldehyde as reagent. Product isolated as an orange solid (394 mg ; 95%). FT-IR (ATR, v, cm^{-1}): 3407, 3060, 2927, 2857, 1646, 1572, 1455, 791. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 8.22$ (s, 2H), $7.64(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.45 (t, J = 7.7 Hz, 2H), 7.01 (d, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.46-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 2 \mathrm{H}), 1.81-$ 1.70 (m, 2H), $1.45-1.39$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 161.72,157.78$, 154.25, 136.63, 124.08, 118.28, 73.63, 32.74, 24.40, 24.30.

R,R-BMPMCN-Amine: Prepared according to the same procedure described for R, R -BPMCN-Amine. Product isolated as an orange solid (349 mg ; 92 \%). FT-IR (ATR, v, cm^{-1}): 3399, 3291, 3061, 2924, 2853, 1577, 1449, 779. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) ס: 7.44 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.73 (d, $J=14.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.44 (s, 6H), 2.26 (dd, $J=5.3,3.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.09 (dd, $J=10.9,2.8$ $\mathrm{Hz}, 2 \mathrm{H}$), $1.68-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.16$ (dd, $\mathrm{J}=8.7,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05-0.95(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 160.05,157.60,136.62,121.24,119.12,61.42,52.54,31.67$, 25.04, 24.48.

R,R-L2: Prepared according to the same procedure described for R, R-L1. Product isolated as a brown oil ($324 \mathrm{mg} ; 79 \%$). FT-IR (ATR, v, cm^{-1}): 3370, 3059, 2926, 2854, 2782, 1577,

1452, 1053, 757. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 7.49(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ (d, $J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.99$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.91 (d, $J=14.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.77 (d, $J=14.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.70-$ 2.63 (m, 2H), 2.53 (s, 6H), $2.30(\mathrm{~s}, 6 \mathrm{H}), 1.99(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.34$ $-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.17$ (dd, $J=12.4,6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta: 160.80$, 157.10, 136.52, 121.01, 119.63, 64.70, 60.36, 36.70, 30.96, 25.86, 25.69, 24.45.

N,N'-dimethyl-N,N'-bis(6-methylpyridyl-2-methyl)-(S,S)-1,2-diaminocyclohexane (S,SBMPMCN) (S,S-L2)

Scheme S4: Synthesis of ligand S,S-BMPMCN (S,S-L2).
S,S-BMPMCN-Imine: Prepared according to the same procedure described for R, R -BPMCN-Imine, employing 6-methyl-2-pyridinecarboxaldehyde as reagent. Product isolated as an orange solid (377 mg ; 91 \%). FT-IR (ATR, v, cm¹): 3402, 3060, 2927, 2857, 1646, 1590, 1455, 791. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 8.31$ (s, 2H), 7.73 (d, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.53 (t, J = $7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.09 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.57-3.47$ (m, 2H), 2.53 (s, 6H), 1.85 (ddd, $J=37.7,15.2,7.1 \mathrm{~Hz}, 6 \mathrm{H}$), 1.50 (dd, $J=14.3,5.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) ठ: 161.72, 157.78, 154.23, 136.63, 124.09, 118.29, 73.63, 32.74, 24.40, 24.30.

S,S-BMPMCN-Amine: Prepared according to the same procedure described for R, R -BPMCN-Amine. Product isolated as an orange solid ($316 \mathrm{mg} ; 87 \%$). FT-IR (ATR, v, cm^{-1}): 3563, 3294, 3061, 2924, 2853, 1577, 1449, 778. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) ס: 7.44 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.73 (d, $J=14.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.44(\mathrm{~s}, 6 \mathrm{H}), 2.25(\mathrm{dd}, J=5.5,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{dd}, J=10.9,2.7$ $\mathrm{Hz}, 2 \mathrm{H}$), $1.68-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.16$ (ddd, $J=7.2,6.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.05-0.94(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) ~ \delta: 160.04,157.61,136.63,121.25,119.14,61.41,52.54$, 31.66, 25.04, 24.47.

S,S-L2: Prepared according to the same procedure described for R, R-L1. Product isolated as a brown oil ($256 \mathrm{mg} ; 85 \%$). FT-IR (ATR, v, cm^{-1}): 3371, 3059, 2926, 2854, 2782, 1577, 1452 , 779. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.90(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{dd}, J=$ 5.7, $3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.45 (s, 6H), 2.21 (s, 6H), $1.97-1.84$ (m, 2H), 1.74 - 1.61 (m, 2H), 1.25 -
$1.16(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 160.83,157.10$, 136.52, 121.00, 119.62, 64.71, 60.38, 36.70, 25.87, 25.69, 24.45.

N, N '-dimethyl-N,N'-bis(6-bromopyridyl-2-methyl)-(R,R)-1,2-diaminocyclohexane $\quad(R, R$ BBPMCN) (R, R-L3)

Scheme S5: Synthesis of ligand $R, R-B B P C N(R, R-L 3)$.
R,R-BBPCN-Imine: Prepared according to the same procedure described for R, R-BPMCNImine, employing 6-bromo-2-pyridinecarboxaldehyde as reagent. The product was isolated, after recrystallisation in EtOH, as a white crystalline solid (394 mg ; 68 \%). FT-IR (ATR, v, cm^{-1}): 2930, 2855, 1649, 1546, 1439, 1119, 791. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) ס: $8.15(\mathrm{~s}$, $2 \mathrm{H}), 7.82(\mathrm{dd}, J=7.6,0.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=7.8,0.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.45-3.35(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.42(\mathrm{dd}, \mathrm{J}=15.2,6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta: 160.09,155.79,141.31,138.84,128.97,119.77,73.52,32.56,24.25$.

R,R-BBPCN-Amine: Prepared according to the same procedure described for R, R-BPMCNAmine. Product isolated as a white solid (345 mg ; 92 \%). FT-IR (ATR, $\mathrm{v}, \mathrm{cm}^{-1}$): 3291, 3238, 2927, 2855, 1553, 1403, 781. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 7.46$ ($\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.38(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~d}, J=14.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.21 (dd, $J=5.5,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.07$ (dd, $J=10.9,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 2 \mathrm{H})$, $1.17-1.14(\mathrm{~m}, 2 \mathrm{H}), 1.01-0.93(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 162.55$, 141.40, 138.97, 126.09, 121.19, 61.40, 51.88, 31.67, 24.96.

R,R-L3: Prepared according to the same procedure described for R, R-L1. Product isolated as a yellow oil (461 mg; 88 \%). FT-IR (ATR, v, cm^{-1}): 3047, 2927, 2853, 2784, 1553, 1402, 1115, 782. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 7.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 2 H), $7.24(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.81(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-$ $2.47(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 1.88(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.16(\mathrm{~m}$, 2 H), $1.12-1.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 163.43,140.94,138.69$, 125.77, 121.38, 64.85, 59.75, 36.80, 25.86, 25.77.

N,N'-dimethyl-N,N'-bis(6-bromopyridyl-2-methyl)-(S,S)-1,2-diaminocyclohexane BBPMCN) (S,S-L3)

Scheme S6: Synthesis of ligand S,S-BBPCN (S,S-L3).

S,S-BBPCN-Imine: Prepared according to the same procedure described for R, R-BPMCNImine, employing 6-bromo-2-pyridinecarboxaldehyde as reagent. The product was isolated, after recrystallisation in EtOH, as a white crystalline solid ($432 \mathrm{mg} ; 74$ \%). FT-IR (ATR, v, cm^{-1}): 2982, 2930, 2854, 1649, 1546, 1438, 1119, 791. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta:$ $8.24(\mathrm{~s}, 2 \mathrm{H}), 7.91(\mathrm{dd}, J=7.7,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=7.8,0.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.55-3.44(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.45(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) ~ \delta: 160.09,155.79,141.30,138.84,128.97,119.77,73.52$, 32.56, 24.25.

S,S-BBPCN-Amine: Prepared according to the same procedure described for R, R-BPMCNAmine. Product isolated as a white solid (392 mg; 96 \%). FT-IR (ATR, v, cm^{-1}): 3278, 3197, 3047, 2932, 2849, 2773, 1552, 1402, 1124, 780. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) ס: 7.46 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.96$ (d, $J=14.7 \mathrm{~Hz}, 2 \mathrm{H})$, 3.74 (d, $J=14.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.21 (dd, $J=5.5,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{dd}, J=10.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.72$ - 1.57 (m, 2H), 1.16 (ddd, $J=11.1,5.2,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 0.97 (dd, $J=9.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 162.53,141.40,138.97,126.09,121.19,61.40,51.87,31.66$, 24.96.

S,S-L3: Prepared according to the same procedure described for R, R-L1. Product isolated as a yellow oil (492 mg; 85%). FT-IR (ATR, v, cm^{-1}): 3064, 2927, 2853, 2784, 1553, 1402, 1115, 782. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 7.45$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38 (t, $J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.25$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.81 (d, $J=15.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.68 (d, $J=15.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.56 (dd, J $=5.7,3.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.20(\mathrm{~s}, 6 \mathrm{H}), 1.89(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.09(\mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 163.40,140.94$, 138.69, 125.78, 121.39, 64.85, 59.74, 36.81, 25.86, 25.76.

N,N'-dimethyl-N,N'-bis(1-methyl-2-imidazolemethyl)-(R,R)-1,2-diaminocyclohexane (R, R-BMIMCN) (R, R-L4)

Scheme S7: Synthesis of ligand R,R-BMIMCN (R,R-L4).
R, R-BMIMCN-Imine: Prepared according to the same procedure described for R, R-BPMCNImine, employing 1-methyl-2-imidazolecarboxaldehyde as reagent. Product isolated as a light yellow oil (348 mg ; 90 \%). FT-IR (ATR, v, cm^{-1}): 3381, 3281, 3106, 2927, 2857, 1464, 1518, 1438, 752. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 8.15$ (s, 2H), 6.96 (d, J = $0.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.79 (s, 2H), 3.82 (s, 6H), $3.23-3.18$ (m, 2H), $1.80-1.69$ (m, 4H), 1.62 (dt, J = 9.7, 8.8 Hz , 2H), 1.43 - 1.37 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 152.18,143.17,128.88$, 124.73, 74.80, 35.51, 32.92, 24.34.
R, R-BMIMCN-Amine: Prepared according to the same procedure described for R, R -BPMCN-Amine. Product isolated as a yellow oil ($309 \mathrm{mg} ; 94 \%$). FT-IR (ATR, $\mathrm{v}, \mathrm{cm}^{-1}$): 3288, 3109, 2926, 2854, 1520, 1449, 1109, 731. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 6.82$ (d, J = $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.56 (s, 6H), 2.18 (dd, $J=5.5,3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.08 (dd, $J=11.0,2.7 \mathrm{~Hz}, 2 \mathrm{H}$), $1.68-1.63$ (m, 2 H), 1.17 (dd, $J=15.1,5.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.01-0.94$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) б: 146.84, 127.00, 121.14, 61.18, 43.07, 32.80, 31.27, 24.90 .
R, R-L4: Prepared according to the same procedure described for R, R-L1. Product isolated as a yellow oil (250 mg ; 78%). FT-IR (ATR, v, cm^{-1}): 3366, 3105, 2928, 2855, 2788, 1499, 1449, 1115, 731. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 6.91$ (d, J = $1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.82 (d, J = $1.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.76 (d, $J=13.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.71 (d, $J=13.3 \mathrm{~Hz}, 8 \mathrm{H}$), 2.59 (dd, $J=5.2,3.1 \mathrm{~Hz}$, 2 H), 2.05 ($\mathrm{s}, 6 \mathrm{H}$), 1.94 (dd, $J=8.0,4.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.76 (dd, $J=6.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.24-1.13$ (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 146.22,126.89,121.40,62.01,50.94,35.42$, 32.72, 25.64, 24.44.

N,N'-dimethyl-N,N'-bis(1-methyl-2-imidazolemethyl)-(S,S)-1,2-diaminocyclohexane (S,S-BMIMCN) (S,S-L4)

Scheme S8: Synthesis of ligand S,S-BMIMCN (S,S-L4).
S,S-BMIMCN-Imine: Prepared according to the same procedure described for R, R-BPMCNImine, employing 1-methyl-2-imidazolecarboxaldehyde as reagent. Product isolated as a yellow oil (348 mg ; 90%). FT-IR (ATR, v, cm${ }^{-1}$): 3385, 3284, 3106, 2927, 2857, 1646, 1438, 752. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) ס: 8.24 (s, 2H), 7.04 (s, 2H), 6.87 (s, 2H), 3.90 (s, 6H), $3.34-3.24$ (m, 2H), $1.91-1.77$ (m, 4H), 1.71 (dd, $J=16.5,13.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.53-1.43$ (m, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 152.17,143.16,128.87,124.73,74.80,35.52$, 32.92, 24.34.

S,S-BMIMCN-Amine: Prepared according to the same procedure described for R, R -BPMCN-Amine. Product isolated as a yellow oil (317 mg ; 95 \%). FT-IR (ATR) v, $\mathrm{cm}^{-1}: 3292$, 3108, 2926, 2854, 1520, 1449, 1109, 731. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 6.82$ (d, J = $1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.56 (s, 6H), 2.18 (dd, $J=5.4,3.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.11-2.05$ (m, 2H), $1.70-1.63$ (m, 2H), 1.18 (dd, $J=12.9,6.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.04-0.92(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 146.83$, 126.99, 121.14, 61.17, 43.05, 32.80, 31.26, 24.89.

S,S-L4: Prepared according to the same procedure described for R, R-L1. Product isolated as a yellow oil (233 mg; 70 \%). FT-IR (ATR, v, cm^{-1}): 3371, 3106, 2928, 2855, 2790, 1499, 1449, 1115, 731. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 6.83$ (d, $J=1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.74 (d, J = $1.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.68 (d, $J=13.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.62(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 8 \mathrm{H}$), $2.51(\mathrm{dd}, J=5.2,3.2 \mathrm{~Hz}$, 2 H), 1.97 (s, 6H), 1.86 (dd, $J=8.2,4.1 \mathrm{~Hz}, 2 \mathrm{H}$), 1.68 (dd, $J=6.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.18-1.04$ (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta: 146.21,126.88,121.40,62.00,50.93,35.42$, 32.72, 25.63, 24.44.

S3 Synthesis of non-heme N_{4}-tetradentate $\mathrm{Mn}(\mathrm{OTf})_{2}$ complexes: R, R and S,S-C1 - C4

The N_{4}-tetradentate non-heme manganese(II)-triflate complexes were prepared according to a modified literature procedure. ${ }^{3-4}$

C1

C2

C3

C4

Figure S1: Non-heme N_{4}-tetradentate $M n(O T f)_{2}$ comlexes synthesised in this study. Asterisk denotes $R, R / S, S$ configuration.

$\left[(R, R-L 1) \mathrm{Mn}(\mathrm{OTf})_{2}\right], R, R-\mathrm{C} 1$

To a stirring solution of $\mathrm{Mn}(\mathrm{OTf})_{2}$ ($165 \mathrm{mg}, 0.443 \mathrm{mmol}$) in dichloromethane (2 ml) was added $\boldsymbol{R}, \boldsymbol{R}$-L1 ($155 \mathrm{mg}, 0.478 \mathrm{mmol}$) in dichloromethane (2 ml). The reaction mixture was stirred for 1 hour. After the allotted time, the pale yellow solution was filtered to remove metallic manganese, the solvent reduced and $\mathrm{Et}_{2} \mathrm{O}$ added. The pale-yellow/beige solid which formed was washed with $\mathrm{Et}_{2} \mathrm{O}$ ($2 \times 20 \mathrm{ml}$ portions), dried in vacuo to afford a beige solid ($146 \mathrm{mg}, 46 \%$). UV/vis, $\mathrm{nm}\left(\varepsilon, \mathrm{A} / \mathrm{mol} \mathrm{dm}^{-3}\right.$): 210.5 (3463), 263.5 (4082). Anal. Calc. (Found) for $\mathrm{MnC}_{22} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{~S}_{2}$: C 38.99 (39.45); H 4.17 (3.84); N 8.27 (8.47); S 9.47 (9.14). $\mu_{\text {eff }}=$ 5.553 BM (297 K, MeCN). APCI-MS (m/z): 528.1214 [M-OTf] ${ }^{+}$.

$\left[(S, S-L 1) M n(O T f)_{2}\right], S, S-C 1$

Prepared according to the same procedure outlined above employing Mn(OTf) ${ }_{2}$ (131 mg , 0.352 mmol) and \mathbf{S}, \mathbf{S}-L1 ($120 \mathrm{mg}, 0.369 \mathrm{mmol}$) as reagents. Product isolated as a beige solid ($137 \mathrm{mg} ; 49 \%$). UV/vis, nm ($\varepsilon, \mathrm{A} / \mathrm{mol} \mathrm{dm}^{-3}$): 214.5 (3634), 265.5 (4141). Anal. Calc. (Found) for $\mathrm{MnC}_{22} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{~S}_{2} .0 .5 \mathrm{MeCN}$: C 39.57 (39.33); H 4.27 (4.16); N 9.03 (9.15); S 9.19 (9.27). $\mu_{\text {eff }}=5.909$ BM ($297 \mathrm{~K}, \mathrm{MeCN}$). APCI-MS (m / z): 528.1244 [M-OTf] ${ }^{+}$.

$\left[(R, R-L 2) M n(\mathrm{OTf})_{2}\right], R, R-\mathrm{C} 2$

Prepared according to the same procedure outlined above employing $\mathrm{Mn}(\mathrm{OTf})_{2}(222 \mathrm{mg}$, 0.598 mmol) and $R, R-L 2(223 \mathrm{mg}, 0.632 \mathrm{mmol})$ as reagents. Product isolated as a beige solid ($235 \mathrm{mg} ; 56 \%$). UV/vis, nm (ε, A/mol dm${ }^{-3}$): 221.5 (3946), 271 (4598). Anal. Calc. (Found) for $\mathrm{MnC}_{24} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{H}_{32} \mathrm{~F}_{6} \mathrm{~S}_{2}$: C 40.85 (41.15); H 4.58 (4.46); N 7.94 (8.30); S 9.09 (8.98). $\mu_{\text {eff }}=5.964$ BM ($297 \mathrm{~K}, \mathrm{MeCN}$). APCI-MS (m/z): $556.1512[\mathrm{M}-\mathrm{OTf}]^{+}$.

[(S,S-L2)Mn(OTf) $)_{2}$, S,S-C2

Prepared according to the same procedure outlined above employing Mn(OTf) ${ }_{2}$ (244 mg , $0.655 \mathrm{mmol})$ and S, S-L2 ($243 \mathrm{mg}, 0.689 \mathrm{mmol}$) as reagents. Product isolated as a beige solid ($360 \mathrm{mg} ; 74 \%$). UV/vis, nm (ε, $\mathrm{A} / \mathrm{mol} \mathrm{dm}^{-3}$): 219.5 (4215), 269.5 (4627). Anal. Calc. (Found) for $\mathrm{MnC}_{24} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{H}_{32} \mathrm{~F}_{6} \mathrm{~S}_{2}$: C 40.85 (40.66); H 4.58 (4.54); N 7.94 (8.30); S 9.09 (8.83). $\mu_{\text {eff }}=5.798$ BM ($297 \mathrm{~K}, \mathrm{MeCN}$). APCI-MS (m/z): $556.1548[\mathrm{M}-\mathrm{OTf}]^{+}$.

$\left[(R, R-L 3) \mathrm{Mn}(\mathrm{OTf})_{2}\right], R, R-\mathrm{C} 3$

Prepared according to the same procedure outlined above employing $\mathrm{Mn}(\mathrm{OTf})_{2}$ (194 mg , 0.523 mmol) and $R, R-L 3(267 \mathrm{mg}, 0.554 \mathrm{mmol})$ as reagents. Product isolated as a beige solid ($253 \mathrm{mg} ; 58 \%$). UV/vis, $\mathrm{nm}\left(\varepsilon, \mathrm{A} / \mathrm{mol} \mathrm{dm}^{-3}\right.$): 220 (4812), 262.5 (4995). Anal. Calc. (Found) for $\mathrm{MnC}_{22} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{~S}_{2} \mathrm{Br}_{2} .0 .25 \mathrm{DCM}$: C 31.20 (30.78); H 3.36 (3.49); N 6.54 (6.86); S 7.49 (7.89). $\mu_{\text {eff }}=5.761$ BM ($297 \mathrm{~K}, \mathrm{MeCN}$). APCI-MS (m/z): 685.9374 [M-OTf] ${ }^{+}$.

[(S,S-L3)Mn(OTf) $)_{2}$, S,S-C3

Prepared according to the same procedure outlined above employing $\mathrm{Mn}(\mathrm{OTf})_{2}$ (228 mg , $0.615 \mathrm{mmol})$ and S, S-L3 ($310 \mathrm{mg}, 0.643 \mathrm{mmol}$) as reagents. Product isolated as a beige solid ($265 \mathrm{mg} ; 49 \%$). UV/vis, $\mathrm{nm}\left(\varepsilon, \mathrm{A} / \mathrm{mol} \mathrm{dm}^{-3}\right.$): 234 (4195), 267.5 (4018). Anal. Calc. (Found) for $\mathrm{MnC}_{22} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{~S}_{2} \mathrm{Br}_{2}$. $\mathrm{Et}_{2} \mathrm{O}$: C 34.34 (34.76); H 3.99 (3.77); N 6.16 (6.92); S 7.05 (7.28). $\mu_{\text {eff }}=5.775$ BM (297 K, MeCN). APCI-MS (m/z): $685.9420[M-O T f]^{+}$.

$\left[(R, R-L 4) M n(\mathrm{OTf})_{2}\right], R, R-\mathrm{C} 4$

Prepared according to the same procedure outlined above employing Mn(OTf) $)_{2}(212 \mathrm{mg}$, 0.570 mmol) and R, R-L4 ($197 \mathrm{mg}, 0.596 \mathrm{mmol}$) as reagents. Product isolated as a white solid ($206 \mathrm{mg} ; 53 \%$). UV/vis, nm (ε, A/mol dm ${ }^{-3}$): 228 (2874), 280 (300). Anal. Calc. (Found) for $\mathrm{MnC}_{20} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~S}_{2}$: C 35.14 (35.30); H 4.43 (4.62); N 12.3 (12.20); S 9.38 (9.29). $\mu_{\text {eff }}=$ 5.713 BM ($297 \mathrm{~K}, \mathrm{MeCN}$). APCI-MS (m/z): 534.1426 [M-OTf] ${ }^{+}$.

[(S,S-L4)Mn(OTf)2], S,S-C4

Prepared according to the same procedure outlined above employing Mn(OTf) ${ }_{2}(220 \mathrm{mg}$, $0.593 \mathrm{mmol})$ and S, S-L4 ($206 \mathrm{mg}, 0.623 \mathrm{mmol}$) as reagents. Product isolated as a white solid (224 g; 52 \%). UV/vis, nm ($\varepsilon, A / \mathrm{mol} \mathrm{dm}^{-3}$): 214.5 (3412), 274 (579). Anal. Calc. (Found) for $\mathrm{MnC}_{20} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~S}_{2}$: C 35.14 (35.10); H 4.43 (4.50); N 12.3 (12.44); S 9.38 (9.29). $\mu_{\text {eff }}=$ 5.650 BM (297 K, MeCN). APCI-MS (m/z): 534.1429 [M-OTf] ${ }^{+}$.

S4 Screening of non-heme \mathbf{N}_{4}-tetradentate $\mathbf{M n}$ (II) complexes

Complex $\boldsymbol{R}, \mathbf{R}$ - or $\mathbf{S , S}$ S-C1-C4 ($2 \boldsymbol{\mu m o l}$) was dissolved in $\mathrm{MeCN}(1.225 \mathrm{ml}$) along with BnOH ($2 \mathrm{mmol}, 0.205 \mathrm{ml}$) and AcOH (10 equivalents, 1.140 ml). $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (4 equivalents, 0.620 ml) was slowly added by syringe pump over a period of 30 min , where after the reaction was stirred for another 5 min . Final concentrations: complex (0.620 mM), BnOH (620 mM), $\mathrm{AcOH}(6.2 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(2.5 \mathrm{M})$. The mixture was filtered through a silica plug and analysed by GC against an internal standard (biphenyl). All runs were done in duplicate.

S5 Optimisation of catalytic alcohol oxidation reaction parameters

S5.1 Optimisation of catalyst concentration

Varying amounts of complex S,S-C4 ($0.1 \mathrm{~mol} \%-1 \mathrm{~mol} \%$) was dissolved in MeCN $(1.225 \mathrm{ml})$ along with $\mathrm{BnOH}(2 \mathrm{mmol}, 0.205 \mathrm{ml})$ and AcOH (10 equivalents, 1.140 ml). 30% $\mathrm{H}_{2} \mathrm{O}_{2}$ (4 equivalents, 0.620 ml) was slowly added by syringe pump over a period of 30 min , where after the reaction was stirred for another 5 min . Final concentrations: S,S-C4 (0.25$2.5 \mathrm{mM}), \mathrm{BnOH}(620 \mathrm{mM}), \mathrm{AcOH}(6.2 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(2.5 \mathrm{M})$. The mixture was filtered through a silica plug and analysed by GC against an internal standard (biphenyl). All runs were done in duplicate.

S5.2 Optimisation of oxidant concentration

Complex S,S-C4 ($4 \mu \mathrm{~mol}$) was dissolved in $\mathrm{MeCN}(1.225 \mathrm{ml})$ along with $\mathrm{BnOH}(0.8 \mathrm{mmol}$, 0.085 ml) and AcOH (10 equivalents, 0.460 ml). Varying amounts of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.5-8$ equivalents) was slowly added by syringe pump over a period of 30 min . where after the reaction was stirred for another 5 min . Final concentrations: S,S-C4 (0.125 mM), BnOH (0.25 mM), $\mathrm{AcOH}(2.5 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(0.12-2 \mathrm{M})$. The mixture was filtered through a silica plug and analysed against an internal standard (biphenyl) by GC. All runs were done in duplicate.

S5.3 Optimisation of co-catalyst concentration

Complex S,S-C4 ($4 \mu \mathrm{~mol}$) was dissolved in $\mathrm{MeCN}(1.225 \mathrm{ml})$ along with $\mathrm{BnOH}(0.8 \mathrm{mmol}$, 0.085 ml) and varying amounts of $\mathrm{AcOH}(0-15$ equivalents, $0-0.690 \mathrm{ml}) .30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (4 equivalents, 0.250 ml) was slowly added by syringe pump over a period of 30 min . where after the reaction was stirred for another 5 min . Final concentrations: S,S-C4 (0.125 mM), $\mathrm{BnOH}(0.25 \mathrm{mM})$, $\mathrm{AcOH}(0-3.8 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(1.0 \mathrm{M})$. The mixture was filtered through a silica plug and analysed against an internal standard (biphenyl) by GC. All runs were done in duplicate.

S5.4 Optimisation of other parameters: time, temperature, catalyst

Table S1: Effect of variation of reaction time, temperature and change of catalyst on the percentage conversion.

Entry	Catalyst mol \%	$\mathbf{H}_{2} \mathbf{O}_{2}$ (eq.)	AcOH (eq.)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (min.)	Conv. (\%)
1	0.1 $(R, R-C 1)$	1.2	10	25	35	18.6
2	0.1 $(R, R-C 2)$	1.2	10	25	35	8.3
4	0.1 $(R, R-C 2)$ 0.1 $(R, R-C 2)$	1.2	10	-5	35	11.5
6	0.1 $(R, R-C 2)$ 0.1	3	14	25	35	12.4
7	0.2 $(R, R-C 2)$ 0.1 $(R, R-C 1)$	3	10	25	35	9.6

Reaction conditions: Complex $\boldsymbol{R}, \mathbf{R}-\mathbf{C 1}$ or $\boldsymbol{R}, \mathbf{R}-\mathbf{C} 2(2 \mu \mathrm{~mol})$ was dissolved in acetonitrile with benzyl alcohol (2 mmol) and $\mathrm{AcOH}(0$ or 1.140 ml$) . \mathrm{H}_{2} \mathrm{O}_{2}(0.19$ or 0.620 ml) was added by syringe pump over 30 min . at temperature indicated (total volume $=3.19 \mathrm{ml}$) and stirred for an additional 5 min . a Conversions were determined by GC against an internal standard (biphenyl).

Figure S2: Optimisation of $\mathrm{H}_{2} \mathrm{O}_{2}$ concentration. Reaction conditions: Complex S,S-C8 ($0.5 \mathrm{~mol} \%$) in acetonitrile with $\mathrm{BnOH}(0.8 \mathrm{mmol})$, $\mathrm{AcOH}(8 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(0.4-6.6 \mathrm{mmol})$ at 298 K for 35 min . All values are the average of a duplicate set of runs.

Figure S3: Optimisation of AcOH concentration. Reaction conditions: Complex S,S-C8 ($0.5 \mathrm{~mol} \%$) in acetonitrile with BnOH (0.8 mmol), $\mathrm{AcOH}(0-12 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(3.2 \mathrm{mmol})$ at 298 K for 35 min . All values are the average of a duplicate set of runs

S6 Evaluating primary and secondary alcohol oxidation with R, R - and S,S-C4

Complex $\boldsymbol{R}, \boldsymbol{R}$ - or $\mathbf{S}, \mathbf{S}-\mathbf{C 4}$ ($0.5 \mathrm{~mol} \%$) was dissolved in MeCN (2.395 ml) using an alcohol substrate (0.8 mmol) and AcOH (10 equivalents, 0.460 ml). After everything was thoroughly mixed, $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (4 equivalents, 0.250 ml) was slowly added via syringe pump over a period of 30 minutes after which the mixture was stirred for an additional 5 minutes. Final concentrations $=$ complex (0.125 mM), alcohol (0.25 M), $\mathrm{AcOH}(2.5 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(1.0 \mathrm{M})$.

After filtering through a silica plug, the mixture was analysed by GC and GC-MS. All runs were performed in duplicate.

To obtain the isolated products after the oxidation reaction, a saturated sodium hydrogen carbonate $\left(\mathrm{NaHCO}_{3}\right)$ solution (3 ml) was slowly added to the reaction mixture until the bubbling ceased. DCM (10 ml) was added and separation of the aqueous and organic layers was done. Extraction of the remaining aqueous layer with DCM ($2 \times 10 \mathrm{ml}$) was performed where after all the organic layers were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration the solvent was allowed to dry in open air.

S6.1 4-Phenyl-2-butanone

Isolated as a yellow oil (79.5 mg ; 63.9 \%). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.37(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 3 \mathrm{H}), 2.80$ (dddd, J = 15.9, 13.8, 7.6, 4.9 Hz, 2H), $1.94-1.78$ (m, 2H), 1.31 (d, $\mathrm{J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 208.13$, 142.07, 128.53, 128.43, 126.15, 32.17, 29.76, 23.65. FT-IR (ATR) v, $\mathrm{cm}^{-1}: 1711$ (C=O). Spectral data is consistent with that previously reported in literature. ${ }^{5}$

S6.2 2-Octanone

Isolated as a colourless oil (53.2 mg ; 50.9 \%). ${ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl_{3}) $\delta(\mathrm{ppm}): 2.42$ (ddd, J = 17.8, 14.9, $7.3 \mathrm{~Hz}, 4 \mathrm{H}$), 2.09 (d, $J=28.9 \mathrm{~Hz}, 5 \mathrm{H}$), $1.54(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.31-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.08$ $-0.77(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 208.94$, $43.43,31.60,29.94,28.85,23.16,22.50,14.04$. FT-IR (ATR) v, $\mathrm{cm}^{-1}: 1708$ (C=O). Spectral data is consistent with that previously reported in literature. ${ }^{6}$

S6.3 5-Nonanone

Isolated as a colourless oil (77.8 mg ; 67.4 \%). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 2.41$ (dt, J = 35.6, $7.5 \mathrm{~Hz}, 5 \mathrm{H}$), 1.53 (dt, J $=15.2,7.6 \mathrm{~Hz}, 5 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(151$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 212.09,42.66,22.50,22.42,13.99$. FT-IR (ATR) v, $\mathrm{cm}^{-1}: 1711$ ($\mathrm{C}=\mathrm{O}$). Spectral data is consistent with that previously reported in literature. ${ }^{7}$

S6.4 Acetophenone

Isolated as a colourless oil (82.1 mg ; 84.2%). ${ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl_{3}) $\delta(\mathrm{ppm}): 7.96(\mathrm{dd}, \mathrm{J}=8.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}$, 1 H,$), 7.46(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(151 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 198.36,137.19,133.24,128.68,128.42,26.74$. FT-IR (ATR) v, cm ${ }^{-1}: 1680$ ($\mathrm{C}=\mathrm{O}$). Spectral data is consistent with that previously reported in literature. ${ }^{6}$

S6.5 Cyclohexanone

Isolated as a colourless oil (7.5 mg ; 9.9 \%). Due to the high water solubility and volatility ${ }^{7}$ of the compound resulting in a low yield, no usable NMR data could be obtained. FT-IR (ATR) v, cm${ }^{-1} 1702$ (C=O).

S6.6 Cyclopentanone

Isolated as a colourless oil ($4.6 \mathrm{mg} ; 6.6 \%$). Due to the high water solubility and volatility ${ }^{7}$ of the compound resulting in a low yield, no usable NMR data could be obtained. FT-IR (ATR) v, cmi: 1692 (C=O).

S6.7 Camphor

Isolated as a white solid (105.5 mg ; 86.2 \%). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 2.39-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (ddd, J = 15.8, 7.9, 3.8 Hz, 1H), 1.83 (d, J = $18.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.67 (dd, $\mathrm{J}=25.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.44-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H})$, 0.82 (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 220.01$, 57.86, 46.94, 43.44, 43.17, 30.04, 27.18, 19.92, 19.28, 9.39. FT-IR (ATR) $\mathrm{v}, \mathrm{cm}^{-1}: 1738$ ($\mathrm{C}=\mathrm{O}$). Spectral data is consistent with that previously reported in literature. ${ }^{6}$

S7 Crystallographic data for complexes R, R - and $S, S-C 4$

Suitable crystals of $\boldsymbol{R}, \boldsymbol{R}$-C4 and S,S-C4 were grown by slow diffusion of diethyl ether into concentrated acetonitrile solutions of the complexes.

Table S2: Crystallographic data and structure refinement parameters for Mn(II)-triflate complexes, R,R-C4 and S,S-C4.

Parameter	Complex	
	R,R-C4	S,S-C4
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{MnN}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}$	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{MnN}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}$
Mr (g/mol)	683.56	683.56
Crystal system	Tetragonal	Tetragonal
Space group	P4(1)2(1)2	P4(3)2(1)2
$a(A)$	9.3461(3)	9.3476(4)
$b(A)$	9.3461(3)	9.348
c (${ }^{\text {a }}$)	32.8191(12)	32.8311(15)
α (deg)	90.00	90.00
β (deg)	90.00	90.00
Y (deg)	90.00	90.00
Crystal dimension (mm)	$0.17 \times 0.21 \times 0.29$	$0.087 \times 0.180 \times 0.314$
Volume (\AA^{3})	2866.7(2)	2868.7(2)
Z	4	4
$\mathrm{D}_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.584	1.583
F(000)	1404	1404
$\lambda\left(\mathrm{MoK}_{\mathrm{a}}\right)(\AA)$	0.71073	0.71073
Temperature (K)	173(2)	200(2)
2θ max (deg)	25.541	25.038
absorption corrections applied (mm^{-1})	0.691	0.691
Goodness-of-fit on F^{2}	1.078	1.056
Final R_{1} indices [$\left./>2 \sigma(l)\right]$	0.0561	0.0555
$w R_{2}$ (all reflections)	0.1523	0.1380
Flack x parameter	-0.007(9)	0.0003(14)

Table S3: Selected bond lengths (\AA), bond angles (${ }^{\circ}$) and torsion angle (${ }^{\circ}$) as determined for Mn(II)-triflate complexes, R,R-C4 and S,S-C4.

	Complex	
	$R, R-\mathrm{C} 4$	S,S-C4
Bond lengths ${ }^{\text {a }}$		
Mn-N1	2.143(6)	$2.143(7)$
Mn-N3	2.372(5)	2.373(6)
Mn-01	2.212(6)	2.209(7)
Bond angles		
N1-Mn-N1'	178.9(3)	179.0(4)
N1-Mn-01	96.3(3)	96.3(3)
N1-Mn-O1'	84.4(2)	84.3(3)
N1-Mn-N3	75.3(2)	75.3(2)
N1-Mn-N3 ${ }^{\prime}$	103.7(4)	103.9(3)
O1-Mn-O1'	103.7(4)	103.5(4)
O1-Mn-N3	93.8(2)	93.9(3)
O1-Mn-N3 ${ }^{\prime}$	154.6(2)	154.6(3)
N3-Mn-N3'	76.8(3)	76.7(3)
${ }^{\text {a }}$ Symmetry-generated atoms have equivalent equivalent atoms for $R, R-C 4$ and $S, S-C 4: y, x,-z$.		

S8 Spectral data of ligands, complexes and isolated ketone products

Figure S4: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of ligand $\boldsymbol{R}, \boldsymbol{R}-\mathrm{L1}$.

Figure $\mathrm{S} 5:{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\boldsymbol{R}, \boldsymbol{R}-\mathrm{L} 1$.

Figure S6: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of ligand $\boldsymbol{R}, \boldsymbol{R}$-L2.

Figure S7: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\boldsymbol{R}, \boldsymbol{R}$-L2.

Figure S8: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of ligand $\boldsymbol{R}, \boldsymbol{R}$-L3.

Figure S9: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of R, R-L3.

Figure S10: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of ligand $\boldsymbol{R}, \boldsymbol{R}$-L4.

Figure S11: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\boldsymbol{R}, \boldsymbol{R}$-L4.

Figure S12: ${ }^{1} \mathrm{H} N M R\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of ligand S,S-L1.

Figure S13: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of S,S-L1.

Figure S14: ${ }^{1} \mathrm{H} N M R\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of ligand $\mathrm{S}, \mathrm{S}-\mathrm{L2}$.

Figure S15: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, C D C l_{3}\right)$ spectrum of $\mathbf{S}, \mathbf{S}-\mathbf{L 2}$.

Figure S16: ${ }^{1} \mathrm{H} N M R\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of ligand S,S-L3.

Figure S17: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{S}, \mathbf{S}-\mathrm{L3}$.

Figure S18: ${ }^{1} \mathrm{H} N M R\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of ligand S,S-L4.

Figure S19: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{S}, \mathrm{S}-\mathrm{L4}$.

Figure S20: UV-visible spectrum of complexes R,R-C1-C4.

Figure S21: UV-visible spectrum of complexes S,S-C1-C4.

Figure S22: APCI-MS spectrum of R,R-C1 recorded in positive ion mode. Isotope clusters found at m / z of 528.12 and 677.07 correspond to the [M - OTf] ${ }^{+}$and [M]+ ions, respectively.

Figure S23: APCI-MS spectrum of S,S-C1 recorded in positive ion mode. Isotope clusters found at m/z of 528.12 and 677.08 correspond to the $[\mathrm{M}-\mathrm{OTf}]^{+}$and $[\mathrm{M}]^{+}$ions, respectively.

Figure S24: APCI-MS spectrum of $\boldsymbol{R}, \mathbf{R}$-C2 recorded in positive ion mode. Isotope clusters found at m / z of 556.15 and 705.10 correspond to the $[M-O T f]^{+}$and $[M]^{+}$ions, respectively.

Figure S25: APCI-MS spectrum of S,S-C2 recorded in positive ion mode. Isotope clusters found at m / z of 556.15 and 705.11 correspond to the $[M-O T f]^{+}$and $[M]^{+}$ions, respectively.

Figure S26: APCI-MS spectrum of R,R-C3 recorded in positive ion mode. Isotope clusters found at m / z of 483.05 , 685.94 and 833.88 correspond to the [Ligand -H], [M - OTf] ${ }^{+}$and $[M-H]^{+}$ions, respectively.

Figure S27: APCI-MS spectrum of S,S-C3 recorded in positive ion mode. Isotope clusters found at m / z of 483.06 and 685.94 correspond to the [Ligand - H] and [M - OTf] ${ }^{+}$ions, respectively.

Figure S28: APCI-MS spectrum of R,R-C4 recorded in positive ion mode. Isotope clusters found at m / z of 534.14 and 683.09 correspond to the $[M-O T f]^{+}$and $[M]^{+}$ions, respectively.

Figure S29: APCI-MS spectrum of S,S-C4 recorded in positive ion mode. Isotope clusters found at m / z of 534.14 and 683.10 correspond to the $[M-O T f]^{+}$and $[M]^{+}$ions, respectively.

Figure $\mathrm{S} 30:{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 4-phenyl-2-butanone.

Figure S31: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4-phenyl-2-butanone.

Figure S32: ${ }^{1} \mathrm{H} N M R\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 2-octanone.

Figure $\mathrm{S} 33:{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2-octanone.

Figure S34: ${ }^{1} \mathrm{H} N \mathrm{NR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 5-nonanone.

Figure $\mathrm{S} 35:{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 5-nonanone.

Figure S36: ${ }^{1} \mathrm{H} N M R\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of acetophenone.

Figure S37: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of acetophenone.

Figure $\mathrm{S} 38:{ }^{1} \mathrm{H} N M R\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of camphor.

Figure $\mathrm{S} 39:{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of camphor.

Figure S40: FT-IR spectrum of isolated 4-phenyl-2-butanone.

Figure S41: FT-IR spectrum of isolated 2-octanone.

Figure S42: FT-IR spectrum of isolated 5-nonanone.

Figure S43: FT-IR spectrum of isolated acetophenone.

Figure S44: FT-IR spectrum of isolated cyclohexanone.

Figure S45: FT-IR spectrum of isolated cyclopentanone.

Figure S46: FT-IR spectrum of isolated camphor.

References

1. Larrow, J. F.; Jacobsen, E. N.; Gao, Y.; Hong, Y.; Nie, X.; Zepp, C. M. The Journal of Organic Chemistry, 1994, 59 (7), 1939-1942.
2. Galsbøl, F.; Steenbøl, P.; Sørensen, B. S. Acta Chem. Scand., 1972, 26 (9), 36053611.
3. Ottenbacher, R. V.; Bryliakov, K. P.; Talsi, E. P. Inorg. Chem., 2010, 49 (18), 86208628.
4. Murphy, A.; Dubois, G.; Stack, T. D. P. J. Am. Chem. Soc., 2003, 125 (18), 52505251.
5. Goksu, S.; Celik, H.; Secen, H. Turkish Journal of Chemistry, 2003, 27 (1), 31-34.
6. Saisaha, P.; Dong, J. J.; Meinds, T. G.; de Boer, J. W.; Hage, R.; Mecozzi, F.; Kasper, J. B.; Browne, W. R. ACS Catalysis, 2016, 6 (6), 3486-3495.
7. Saisaha, P.; Buettner, L.; Van der Meer, M.; Hage, R.; Feringa, B. L.; Browne, W. R.; De Boer, J. W. Adv. Synth. Catal., 2013, 355 (13), 2591-2603.
