# **Supporting Information**

# Slow relaxation of the magnetization observed in mononuclear Ln-radical compounds with $D_{4d}$ geometry configuration

Peng Yun Chen,<sup>a</sup> Ming Ze Wu,<sup>a</sup> Zhong Yi Liu,<sup>a</sup> Li Tian\*<sup>a</sup> and Yi Qun Zhang\*<sup>b</sup>

<sup>a</sup> College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Ministry of Education, Tianjin Normal University, Tianjin 300387, P. R. China. E-mail: lilytianli@hotmail.com

<sup>b</sup> Nanjing Normal Univ, Sch Phys Sci & Technol, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China. E-mail: zhangyiquan@njnu.edu.cn

#### **Table of Contents**

| Section S1 | Tables of Crystal Data          | 2-4  |
|------------|---------------------------------|------|
| Section S2 | Powder X-ray Diffraction (PXRD) | 5    |
| Section S3 | Other crystal structure graphic | 5-7  |
| Section S4 | Other Magnetic Data             | 8-13 |

## 1. Crystallographic Data

|                                  | 1                                   | 2                                 | 3                                 |
|----------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|
| formula                          | $C_{50}H_{36}F_{36}Gd_2N_8O_{16}\\$ | $C_{50}H_{36}F_{36}N_8O_{16}Tb_2$ | $C_{50}H_{36}Dy_2F_{36}N_8O_{16}$ |
| Mr                               | 2003.34                             | 2006.71                           | 2013.87                           |
| crystal system                   | monoclinic                          | monoclinic                        | monoclinic                        |
| space group                      | $P2_{1}/c$                          | $P2_{1}/c$                        | $P2_{1}/c$                        |
| <i>a</i> (Å )                    | 22.7171(4)                          | 22.4759(11)                       | 22.3377(12)                       |
| <i>b</i> (Å )                    | 17.7935(3)                          | 17.6489(7)                        | 17.6000(7)                        |
| <i>c</i> (Å )                    | 18.7601(4)                          | 18.5888(9)                        | 18.5483(10)                       |
| $\alpha(^{\circ})$               | 90                                  | 90                                | 90                                |
| $\beta(^{\circ})$                | 109.425(2)                          | 108.609(5)                        | 108.210(6)                        |
| $\gamma(^{\circ})$               | 90                                  | 90                                | 90                                |
| $V(Å^3)$                         | 7151.5(2)                           | 6988.2(6)                         | 6927.0(6)                         |
| Ζ                                | 4                                   | 4                                 | 4                                 |
| $\rho$ calc (Mg/m <sup>3</sup> ) | 1.861                               | 1.907                             | 1.931                             |
| $\mu$ (mm <sup>-1</sup> )        | 13.351                              | 11.339                            | 2.306                             |
| <i>F</i> (000)                   | 3888                                | 3896                              | 3904                              |
| $\theta$ range(°)                | 3.52~67.08                          | 3.54~67.08                        | 2.071~25.008                      |
| GOF on $F^2$                     | 1.021                               | 1.047                             | 1.030                             |
| $R_1/wR_2[I > 2\sigma(I)]$       | 0.0600, 0.1535                      | 0.1074, 0.2835                    | 0.0524, 0.1201                    |
| $R_1/wR_2$ (all data)            | 0.0841, 0.1696                      | 0.1449, 0.3215                    | 0.0822, 0.1475                    |

Table S1. Crystallographic Data and Structure Refinement Details for 1-3.

Table S2. Lanthanide geometry analysis by SHAPE software

| Ln(III)         | $D_{2d}$ -DD | $C_{2\nu}$ -TP | $D_{4d}$ -AP |
|-----------------|--------------|----------------|--------------|
| Gd1(1)          | 1.273        | 2.420          | 0.647        |
| Gd2(1)          | 1.378        | 2.097          | 0.534        |
| Tb1( <b>2</b> ) | 1.483        | 1.714          | 0.564        |
| Tb2( <b>2</b> ) | 1.620        | 2.007          | 0.380        |
| Dy1( <b>3</b> ) | 1.538        | 1.730          | 0.536        |
| Dy2( <b>3</b> ) | 1.749        | 2.066          | 0.333        |

| Gd(1)-O(1)      | 2.311(5)   | O(3)-Gd(1)-O(4)   | 71.82(16)  |
|-----------------|------------|-------------------|------------|
| Gd(1)-O(3)      | 2.360(5)   | O(3)-Gd(1)-O(5)   | 77.16(16)  |
| Gd(1)-O(4)      | 2.384(5)   | O(3)-Gd(1)-O(7)   | 140.27(17) |
| Gd(1)-O(5)      | 2.402(5)   | O(4)-Gd(1)-O(5)   | 123.99(16) |
| Gd(1)-O(6)      | 2.359(5)   | O(4)-Gd(1)-N(3)   | 133.36(18) |
| Gd(1)-O(7)      | 2.371(4)   | O(5)-Gd (1)-N(3)  | 74.22(18)  |
| Gd(1)-O(8)      | 2.383(5)   | O(6)-Gd(1)-O(3)   | 109.28(17) |
| Gd(1)-N(3)      | 2.546(6)   | O(6)-Gd(1)-O(4)   | 75.39(16)  |
| Gd(2)-O(9)      | 2.334(6)   | O(6)-Gd(1)-O(8)   | 79.74(17)  |
| Gd(2)-O(11)     | 2.359(5)   | O(6)-Gd(1)-N(3)   | 145.32(17) |
| Gd(2)-O(12)     | 2.367(5)   | O(8)-Gd(1)-N(3)   | 118.97(18) |
| Gd(2)-O(13)     | 2.380(5)   | N(1)-O(1)-Gd(1)   | 141.3(4)   |
| Gd(2)-O(14)     | 2.377(5)   | O(9)-Gd(2)-O(11)  | 78.97(19)  |
| Gd(2)-O(15)     | 2.379(5)   | O(9)-Gd(2)-O(12)  | 81.9(2)    |
| Gd(2)-O(16)     | 2.363(5)   | O(9)-Gd(2)-O(14)  | 144.47(17) |
| Gd(2)-N(5)      | 2.542(6)   | O(11)-Gd(2)-O(12) | 71.61(17)  |
| O(1)-Gd(1)-O(3) | 82.38(19)  | O(12)-Gd(2)-O(13) | 119.15(17) |
| O(1)-Gd(1)-O(4) | 77.27(18)  | O(15)-Tb(2)-O(11) | 138.0(3)   |
| O(1)-Gd(1)-O(5) | 142.39(16) | O(15)-Tb(2)-O(14) | 111.9(3)   |
| O(1)-Gd(1)-O(6) | 144.76(17) | O(16)-Tb(2)-O(13) | 119.2(3)   |
| O(1)-Gd(1)-O(7) | 110.4(20)  | O(11)-Gd(2)-N(5)  | 134.04(18) |
| O(1)-Gd(1)-O(8) | 74.02(18)  | O(12)-Gd(2)-N(5)  | 71.37(17)  |
| O(1)-Gd(1)-N(3) | 69.57(18)  | N(7)-O(9)-Gd(2)   | 138.8(4)   |

Table S3. Selected bond lengths (Å) and bond angles (°) in complex 1.

Table S4. Selected bond lengths (Å) and bond angles (°) in complex  ${\bf 2}.$ 

| Tb(1)-O(1)  | 2.289(8)  | O(3)-Tb(1)-O(4)  | 72.0(3)  |
|-------------|-----------|------------------|----------|
| Tb(1)-O(3)  | 2.352(9)  | O(3)-Tb(1)-O(6)  | 144.6(3) |
| Tb(1)-O(4)  | 2.346(8)  | O(3)-Tb(1)-O(5)  | 79.2(3)  |
| Tb(1)-O(5)  | 2.365(9)  | O(4)-Tb(1)-O(6)  | 141.6(3) |
| Tb(1)-O(6)  | 2.357(7)  | O(4)-Tb(1)-O(8)  | 109.3(3) |
| Tb(1)-O(7)  | 2.375(8)  | O(4)-Tb(1)-O(5)  | 145.3(3) |
| Tb(1)-O(8)  | 2.335(8)  | O(5)-Tb(1)-O(7)  | 136.5(3) |
| Tb(1)-N(3)  | 2.531(11) | O(5)-Tb(1)-O(6)  | 71.0(2)  |
| Tb(2)-O(9)  | 2.329(8)  | O(6)-Tb(1)-O(8)  | 80.7(3)  |
| Tb(2)-O(11) | 2.349(9)  | O(4)-Tb(1)-N(3)  | 71.9(3)  |
| Tb(2)-O(12) | 2.342(9)  | O(8)-Tb(1)-N(3)  | 144.9(3) |
| Tb(2)-O(13) | 2.368(9)  | N(1)-O(1)-Tb(1)  | 140.5(7) |
| Tb(2)-O(14) | 2.345(9)  | O(9)-Tb(2)-O(11) | 112.8(3) |

| Tb(2)-O(15)     | 2.332(8)  | O(9)-Tb(2)-O(12)  | 76.1(3)  |
|-----------------|-----------|-------------------|----------|
| Tb(2)-O(16)     | 2.349(8)  | O(12)-Tb(2)-O(11) | 72.5(3)  |
| Tb(2)-N(7)      | 2.524(11) | O(14)-Tb(2)-O(11) | 81.6(3)  |
| O(1)-Tb(1)-O(3) | 76.3(3)   | O(14)-Tb(2)-O(16) | 74.7(3)  |
| O(1)-Tb(1)-O(4) | 81.3(3)   | O(15)-Tb(2)-O(11) | 138.0(3) |
| O(1)-Tb(1)-O(5) | 73.3(3)   | O(15)-Tb(2)-O(14) | 111.9(3) |
| O(1)-Tb(1)-O(7) | 103.9(2)  | O(16)-Tb(2)-O(13) | 119.2(3) |
| O(1)-Tb(1)-O(8) | 144.2(3)  | O(11)-Tb(2)-N(7)  | 75.3(3)  |
| O(1)-Tb(1)-O(6) | 112.6(3)  | O(13)-Tb(2)-N(7)  | 75.6(3)  |
| O(1)-Tb(1)-N(3) | 70.7(3)   | N(5)-O(9)-Tb(2)   | 135.8(8) |

Table S5. Selected bond lengths (Å) and bond angles (°) in complex  $\mathbf{3}$ .

| Dy(1)-O(1)      | 2.283(5)   | O(3)-Dy(1)-O(6)   | 109.42(18) |
|-----------------|------------|-------------------|------------|
| Dy(1)-O(3)      | 2.316(5)   | O(3)-Dy(1)-O(7)   | 141.13(17) |
| Dy(1)-O(4)      | 2.347(5)   | O(3)-Dy(1)-O(8)   | 145.31(17) |
| Dy(1)-O(5)      | 2.368(5)   | O(3)-Dy(1)-N(3)   | 72.42(19)  |
| Dy(1)-O(6)      | 2.341(5)   | O(4)-Dy(1)-O(7)   | 144.55(17) |
| Dy(1)-O(7)      | 2.342(5)   | O(5)-Dy(1)-O(7)   | 141.13(17) |
| Dy(1)-O(8)      | 2.354(5)   | O(4)-Dy(1)-N(3)   | 134.43(19) |
| Dy(1)-N(3)      | 2.516(6)   | O(5)-Dy(1)-O(6)   | 73.09(17)  |
| Dy(2)-O(9)      | 2.324(5)   | O(6)-Dy(1)-O(7)   | 80.78(18)  |
| Dy(2)-O(11)     | 2.333(5)   | O(6)-Dy(1)-N(3)   | 145.69(18) |
| Dy(2)-O(12)     | 2.337(5)   | N(1)-O(1)-Dy(1)   | 140.4(4)   |
| Dy(2)-O(13)     | 2.350(5)   | O(9)-Dy(2)-O(11)  | 113.03(18) |
| Dy(2)-O(14)     | 2.349(5)   | O(9)-Dy(2)-O(12)  | 75.85(19)  |
| Dy(2)-O(15)     | 2.330(5)   | O(9)-Dy(2)-O(13)  | 143.69(17) |
| Dy(2)-O(16)     | 2.315(5)   | O(9)-Dy(2)-O(14)  | 142.31(17) |
| Dy(2)-N(7)      | 2.499(6)   | O(9)-Dy(2)-N(7)   | 70.53(18)  |
| O(1)-Dy(1)-O(4) | 76.66(18)  | O(11)-Dy(2)-O(12) | 72.56(17)  |
| O(1)-Dy(1)-O(5) | 142.72(17) | O(11)-Dy(2)-O(13) | 81.56(18)  |
| O(1)-Dy(1)-O(6) | 143.56(17) | O(11)-Dy(2)-N(7)  | 74.77(19)  |
| O(1)-Dy(1)-O(7) | 112.92(19) | O(12)-Dy(2)-O(13) | 77.64(19)  |
| O(1)-Dy(1)-O(3) | 81.55(19)  | O(12)-Dy(2)-O(14) | 136.66(18) |
| O(1)-Dy(1)-O(8) | 72.88(19)  | O(13)-Dy(2)-O(16) | 72.64(17)  |
| O(1)-Dy(1)-N(3) | 70.48(19)  | O(15)-Dy(2)-O(16) | 72.64(17)  |
| O(3)-Dy(1)-O(4) | 72.28(16)  | O(16)-Dy(2)-N(7)  | 72.20(18)  |
| O(3)-Dy(1)-O(5) | 76.76(17)  | N(5)-(O9)-Dy(2)   | 135.4(4)   |
|                 |            |                   |            |

### 2. Powder X-ray Diffraction (PXRD)



Figure S1. Powder X-ray diffractions of 1-3.

### 3. Other crystal structure graphic



**Figure S2**. (a) Simplified view of the crystal structure of **1**. Fluorine and hydrogen atoms are omitted for clarity. (b)  $D_{4d}$ -symmetry polyhedral of the central gadolinium atoms.



**Figure S3**. The 3D supermolecular framework via  $C-H \cdot F$  (brown dashed lines) and  $C-H \cdot O$  (purple dashed lines) hydrogen bonds in **1**.



**Figure S4**. The 3D supermolecular framework via  $C-H\cdots F$  (brown dashed lines) and  $C-H\cdots O$  (purple dashed lines) hydrogen bonds in **2**.



Figure S5. (a) Simplified view of the crystal structure of **3** Fluorine and hydrogen atoms are omitted for clarity. (b)  $D_{4d}$ -symmetry polyhedral of the central dysprosium atoms.



**Figure S6**. The 3D supermolecular framework via  $C-H \cdot F$  (brown dashed lines) and  $C-H \cdot O$  (purple dashed lines) hydrogen bonds in **3**.

### 4. Other Magnetic Data



**Figure S7**. Field dependence of the magnetization at 2, 3, and 5 K for complexes **2** (left) and **3** (right).



**Figure S8**. Temperature dependencies of the in-phase ( $\chi'$ ) and out-of-phase signals ( $\chi''$ ) components of the ac magnetic susceptibility for **2** at zero dc fields with an oscillation of 3.0 Oe.



**Figure S9**. Temperature dependencies of the in-phase ( $\chi'$ , left) and out-of-phase signals ( $\chi''$ , right) components of the ac magnetic susceptibility for **3** at zero dc fields with an oscillation of 3.0 Oe.

| Compound 2      |                                    |                                    |           |        |
|-----------------|------------------------------------|------------------------------------|-----------|--------|
| Temperature / K | $\chi_{\rm S}/{\rm cm^3mol^{-1}K}$ | $\chi_{\rm T}/{\rm cm^3mol^{-1}K}$ | τ/s       | α      |
| 2               | 2.3973                             | 3.5204                             | 0.0396    | 0.1817 |
| 2.2             | 2.2115                             | 3.2885                             | 0.0154    | 0.1381 |
| 2.4             | 2.2332                             | 3.2685                             | 0.0057    | 0.1145 |
| 2.6             | 2.4562                             | 3.4438                             | 0.0025    | 0.0981 |
| 2.8             | 2.4308                             | 3.3692                             | 0.0012    | 0.0799 |
| 3               | 2.4556                             | 3.3444                             | 6.8991E-4 | 0.0603 |
| 3.2             | 2.4753                             | 3.3247                             | 4.1230E-4 | 0.0477 |
| 3.4             | 2.1000                             | 2.8999                             | 2.6626E-4 | 0.0336 |
| 3.6             | 2.1148                             | 2.8852                             | 1.7771E-4 | 0.0252 |
| 3.8             | 2.3792                             | 3.1208                             | 1.1294E-4 | 0.0258 |
| 4.0             | 2.1419                             | 2.8581                             | 8.7743E-5 | 0.0169 |
|                 | Co                                 | ompound <b>3</b>                   |           |        |
| Temperature / K | $\chi_{\rm S}/{\rm cm^3mol^{-1}K}$ | $\chi_T / cm^3 mol^{-1}K$          | τ/s       | α      |
| 2               | 1.4288                             | 3.5712                             | 0.0280    | 0.0591 |
| 3               | 1.6726                             | 3.3274                             | 0.0229    | 0.0518 |
| 4               | 1.1813                             | 3.1868                             | 0.0130    | 0.0442 |
| 5               | 1.9227                             | 3.0772                             | 0.0048    | 0.0434 |
| 5.5             | 1.9674                             | 3.0326                             | 0.0026    | 0.0516 |
| 6               | 2.0023                             | 2.9977                             | 0.0014    | 0.0700 |
| 6.5             | 2.0357                             | 2.9643                             | 6.7595E-4 | 0.0927 |
| 7               | 2.0644                             | 2.9356                             | 3.4714E-4 | 0.1183 |
| 7.5             | 2.0897                             | 2.9103                             | 1.8298E-4 | 0.1433 |
| 8               | 2.1295                             | 2.8705                             | 1.0650E-4 | 0.1491 |
| 9               | 2.0347                             | 2.6950                             | 8.3596E-5 | 0.0455 |

**Table S6**. Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of 2and 3 according to the generalized Debye model.