Supporting Information

Ultrahigh luminescence quantum yield lanthanide coordination polymer as multifunctional sensor

Kai Zheng,^a Ziqi Liu,^a Yefei Jiang,^a Penghu Guo,^b Haoran Li,^a Chenghui Zeng,^{*a} Seik Weng Ng^c and Shengliang Zhong^a

^{*a*} College of Chemistry and Chemical Engineering, Research Center for Ultra Fine Powder Materials, Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi['] s Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, 330022 P. R. China. E-mail: chenghuizeng@jxnu.edu.cn.

^b Laboratory of Industrial Chemistry, Ruhr University Bochum, 44801 Bochum, Germany.

^c The University of Nottingham Malaysia Campus, 43500, Semenyih, Selangor, Darul Ehsan, Malaysia.

Scheme S1. Structure of the ligand 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid.

Complex	1a	1b	1c	1d	2a	2b	2c	2d	2e	2f
CCDC	1855008	1855010	1855011	1855009	1855015	1855012	1855013	1855014	1855017	1855016
Empirical formula	$EuNaC_{52}Cl_4F_4H_{40}N_4O_{16}$	$\begin{array}{l} GdNaC_{52Cl_4F_4} \\ H_{40N_4O_{16}} \end{array}$	$\begin{array}{l} TbNaC_{52}Cl_4F_4H\\ {}_{40}N_4O_{16} \end{array}$	$\begin{array}{l} HoNaC_{52}Cl_4F_4\\ H_{40}N_4O_{16} \end{array}$	EuKC ₅₂ Cl ₄ F ₄ H ₃₈ N ₄ O ₁₅	PrKC ₅₂ Cl ₄ F ₄ H ₃₈ N4O15	$TbKC_{52}CI_4F_4H_3$ $_8N_4O_{15}$	DyKC ₅₂ Cl ₄ F ₄ H ₃ ₈ N ₄ O ₁₅	$\frac{ErKC_{52}Cl_4F_4H_{38}}{N_4O_{15}}$	YbKC ₅₂ Cl ₄ F ₄ H ₃₈ N 4O ₁₅
Formula weight	1369.63	1374.92	1376.60	1382.60	1367.74	1356.67	1374.69	1378.26	1383.02	1388.80
Temperature / K	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)
Wavelength / Å	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space group	P-1	P-1	P-1	P-1	P-1	P-1	P-1	P-1	P-1	P-1
a / Å	10.0557(4)	10.0529(2)	10.0564(2)	10.0685(2)	10.0373(6)	10.0279(3)	10.0496(3)	10.0542(5)	10.0569(5)	10.0457(4)
b/Å	12.7534(5)	12.7458(3)	12.7324(4)	12.7366(3)	12.7525(8)	12.7769(4)	12.7645(4)	12.7549(7)	12.7687(6)	12.7511(5)
c / Å	22.0808(8)	22.0524(5)	22.0394(7)	22.0035(7)	21.8207(14)	22.0478(7)	21.6687(7)	21.7465(12)	21.6123(9)	21.5609(8)
α/°	73.488(3)	73.527(2)	73.580(3)	73.668(2)	74.266(6)	73.703(3)	74.538(3)	74.531(5)	74.868(4)	74.844(3)
β/°	85.530(3)	85.433(2)	85.371(2)	85.270(2)	86.381(3)	86.366(2)	86.700(3)	86.276(4)	86.659(4)	86.508(3)
γ/°	72.201(4)	72.228(2)	72.185(2)	72.024(2)	72.833(6)	72.703(3)	73.095(3)	72.965(5)	72.925(4)	72.910(3)
V / ų	2584.88(17)	2580.26(10)	2577.03(13)	2575.63(11)	2568.2(3)	2588.14(14)	2562.65(14)	2575.63(11)	2560.9(2)	2548.62(18)
Z	2	2	2	2	2	2	2	2	2	2
Calculated density/mg·m ⁻³	1.760	1.770	1.774	1.783	1.769	1.741	1.782	1.781	1.794	1.810
F(000)	1372	1374	1376	1380	1352	1360	1372	1374	1378	1382
Data/restraints/ parameters	9006/0/745	8891/0/745	9007/1/751	8802/0/745	17062/0/731	9069/0/751	8985/0/748	9005/0/735	11405/0/730	11307/0/730
Goodness-of-fit on F ²	1.005	1.006	1.006	1.006	1.039	1.057	1.024	1.013	1.083	1.082
Final R indices ^a [I > 2sigma(I)]	R1=0.0379, wR2=0.0852	R1=0.0320, wR2=0.0832	R1=0.0397, wR2=0.0955	R1=0.0355 wR2=0.0907	R1=0.0515 wR2=0.1289	R1=0.0382, wR2=0.0795	R1=0.0367, wR2=0.0833	R1=0.0666 wR2=0.1510	R1=0.0607 wR2=0.1415	R1=0.0588, wR2=0.1324

Table S1. Crystallographic data and structure refinement parameters for the three series of Ln-CPs.

 ${}^{a}R = \sum ||Fo| - |Fc|| / \sum |Fo|, wR = [\sum w(|Fo^{2}| - |Fc^{2}|)^{2} / \sum w(|Fo^{2}|)^{2}]^{1/2}$

Fig. S1. FT-IR spectra of the ligand, 1a-1d.

Fig. S2. FT-IR spectra of the ligand, 2a and 2c.

Fig. S3. The structure of 1a is similar to the chromosome.

Fig. S4. Ligand coordination modes in 1a.

Fig. S5. PXRD peak positions of as synthesized **1a-1d** compete well with their simulated results.

Fig. S6. Ligand coordination modes in 2a.

Fig. S7. PXRD peak positions comparison of as synthesized 2a, 2c and their simulated results.

Fig. S8. Excitation and emission spectra of solid sample 2a.

Fig. S9. Excitation and emission spectra of solid sample 2c.

Fig. S10. CIE coordinate diagram of 2a and 2c.

Fig. S11. Luminescence decay of 2a and 2c, $R(t) = 0.691 + 490.123 \exp^{(-t/0.755)} + 1400.028 \exp^{(-t/1.262)}$ and $R(t) = 0.521 + 1794.646 \exp^{(-t/0.238)}$ are utilized for fitting the luminescence decay curve of 2a and 2c. The best parameters of χ^2 are 1.148 and 1.109, lifetimes are 0.94 and 0.238 for 2a and 2c, respectively.

Fig. S12. PXRD of 1a soaked in solution with various pH.

Fig. S13. UV-vis of Cr^{3+} and **1a** sloutions.

Eu(2)-O(4)	2.332(3)	Eu(2)-O(9)	2.388(3)
Eu(2)-O(10)	2.345(3)	Eu(2)-O(3)	2.402(3)
Eu(2)-O(7)	2.365(3)	Eu(2)-O(6)	2.464(2)
Eu(2)-O(1)	2.379(3)	Eu(2)-O(12)	2.506(3)
O(4)-Eu(2)-O(10)	108.37(11)	O(1)-Eu(2)-O(6)	73.90(9)
O(4)-Eu(2)-O(7)	83.40(10)	O(9)-Eu(2)-O(6)	142.48(8)
O(10)-Eu(2)-O(7)	137.92(9)	O(3)-Eu(2)-O(6)	75.94(9)
O(4)-Eu(2)-O(1)	137.27(9)	O(4)-Eu(2)-O(12)	75.92(9)
O(10)-Eu(2)-O(1)	85.41(10)	O(10)-Eu(2)-O(12)	69.85(9)
O(7)-Eu(2)-O(1)	113.57(10)	O(7)-Eu(2)-O(12)	74.59(9)
O(4)-Eu(2)-O(9)	145.43(9)	O(1)-Eu(2)-O(12)	144.92(9)
O(10)-Eu(2)-O(9)	77.63(10)	O(9)-Eu(2)-O(12)	74.57(9)
O(7)-Eu(2)-O(9)	71.76(9)	O(3)-Eu(2)-O(12)	140.42(9)
O(1)-Eu(2)-O(9)	76.13(9)	O(6)-Eu(2)-O(12)	121.90(9)
O(4)-Eu(2)-O(3)	79.06(11)	O(9)-Eu(2)-O(3)	114.17(11)
O(10)-Eu(2)-O(3)	148.35(9)	O(4)-Eu(2)-O(6)	70.13(9)
O(7)-Eu(2)-O(3)	72.47(9)	O(10)-Eu(2)-O(6)	77.96(9)
O(1)-Eu(2)-O(3)	70.41(9)	O(7)-Eu(2)-O(6)	141.95(8)

 Table S2. Selected bond lengths and bond angles of 1a.

Gd(1)-O(10)	2.321(2)	Gd(1)-O(3)	2.378(2)
Gd(1)-O(4)	2.337(2)	Gd(1)-O(9)	2.388(2)
Gd(1)-O(1)	2.352(2)	Gd(1)-O(12)	2.453(2)
Gd(1)-O(7)	2.368(2)	Gd(1)-O(6)	2.487(2)
O(10)-Gd(1)-O(4)	108.31(9)	O(1)-Gd(1)-O(12)	141.99(7)
O(10)-Gd(1)-O(1)	83.11(9)	O(7)-Gd(1)-O(12)	74.02(8)
O(4)-Gd(1)-O(1)	138.04(8)	O(3)-Gd(1)-O(12)	142.33(8)
O(10)-Gd(1)-O(7)	137.76(8)	O(9)-Gd(1)-O(12)	75.95(8)
O(4)-Gd(1)-O(7)	85.13(9)	O(10)-Gd(1)-O(6)	75.60(8)
O(1)-Gd(1)-O(7)	113.78(9)	O(4)-Gd(1)-O(6)	70.06(8)
O(10)-Gd(1)-O(3)	145.26(8)	O(1)-Gd(1)-O(6)	74.42(8)
O(4)-Gd(1)-O(3)	77.65(8)	O(7)-Gd(1)-O(6)	144.75(8)
O(1)-Gd(1)-O(3)	71.96(8)	O(3)-Gd(1)-O(6)	74.65(8)
O(7)-Gd(1)-O(3)	75.87(8)	O(12)-Gd(1)-O(6)	121.85(8)
O(3)-Gd(1)-O(9)	114.39(9)	O(10)-Gd(1)-O(9)	79.03(9)
O(10)-Gd(1)-O(12)	70.39(8)	O(4)-Gd(1)-O(9)	148.25(8)
O(4)-Gd(1)-O(12)	77.73(8)	O(1)-Gd(1)-O(9)	72.54(8)
O(9)-Gd(1)-O(6)	140.23(8)		

 Table S3. Selected bond lengths and bond angles of 1b.

 Table S4. Selected bond lengths and bond angles of 1c.

Tb(1)-O(20)	2.302(13)	Tb(1)-O(22)	2.368(12)
Tb(1)-O(11)	2.313(13)	Tb(1)-O(23)	2.377(13)
Tb(1)-O(13)	2.332(12)	Tb(1)-O(21)	2.442(11)
Tb(1)-O(18)	2.352(12)	Tb(1)-O(12)	2.476(12)
O(20)-Tb(1)-O(11)	108.1(5)	O(22)-Tb(1)-O(21)	74.1(4)
O(20)-Tb(1)-O(13)	83.1(5)	O(23)-Tb(1)-O(21)	142.0(4)
O(11)-Tb(1)-O(13)	138.7(4)	O20)-Tb(1)-O(12)	75.8(4)
O(20)-Tb(1)-O(18)	137.9(4)	O(11)-Tb(1)-O(12)	75.3(4)
O(11)-Tb(1)-O(18)	85.1(5)	O(13)-Tb(1)-O(12)	70.6(4)
O(13)-Tb(1)-O(18)	113.5(5)	O(18)-Tb(1)-O(12)	74.5(4)

O(20)-Tb(1)-O(22)	145.3(4)	O(22)-Tb(1)-O(12)	145.0(5)
O(11)-Tb(1)-O(22)	77.8(5)	O(23)-Tb(1)-O(12)	74.8(4)
O(13)-Tb(1)-O(22)	72.3(4)	O(21)-Tb(1)-O(12)	139.8(4)
O(18)-Tb(1)-O(22)	75.7(4)	O(18)-Tb(1)-O(21)	131.5(12)
O(20)-Tb(1)-O(23)	78.7(5)	O(22)-Tb(1)-O(23)	114.9(5)
O(11)-Tb(1)-O(23)	147.9(4)	O(20)-Tb(1)-O(21)	70.5(4)
O(13)-Tb(1)-O(23)	72.3(4)	O(11)-Tb(1)-O(21)	77.3(4)
O(18)-Tb(1)-O(23)	71.1(5)	O(13)-Tb(1)-O(21)	141.9(4)

 Table S5. Selected bond lengths and bond angles of 1d.

Ho(2)-O(1)	2.297(3)	Ho(2)-O(6)	2.340(3)
Ho(2)-O(4)	2.314(3)	Ho(2)-O(9)	2.354(3)
Ho(2)-O(7)	2.325(3)		
O(10)-Ho(2)-O(1)	107.83(11)	O(10)-Ho(2)-O(6)	144.96(9)
O(10)-Ho(2)-O(4)	83.01(10)	O(1)-Ho(2)-O(6)	77.71(10)
O(1)-Ho(2)-O(4)	19.26(9)	O(4)-Ho(2)-O(6)	72.64(9)
O(10)-Ho(2)-O(7)	138.85(9)	O(7)-Ho(2)-O(6)	75.27(9)
O(1)-Ho(2)-O(7)	84.57(10)	O(10)-Ho(2)-O(9)	78.88(11)
O(4)-Ho(2)-O(7)	113.34(11)	O(1)-Ho(2)-O(9)	147.73(9)
O(1)-Ho(2)-O(12)	76.85(9)	O(4)-Ho(2)-O(9)	72.02(9)
O(4)-Ho(2)-O(12)	141.85(9)	O(7)-Ho(2)-O(9)	71.77(10)
O(7)-Ho(2)-O(12)	74.17(10)	O(6)-Ho(2)-O(9)	115.36(11)
O(6)-Ho(2)-O(12)	141.64(9)	O(10)-Ho(2)-O(12)	71.07(9)

 Table S6. Selected bond lengths and bond angles of 2a.

Eu(1)-O(8)	2.316(4)	Eu(1)-O(3)	2.508(4)
Eu(1)-O(2)	2.346(4)	K(1)-O(1W)	2.515(8)
Eu(1)-O(5)	2.377(4)	K(1)-O(2W)	2.711(7)
Eu(1)-O(12)	2.376(4)	K(1)-O(1)	2.771(6)

Eu(1)-O(6)	2.382(4)	K(1)-O(4)	2.948(6)
Eu(1)-O(11)	2.406(4)	K(1)-O(2)	2.965(5)
Eu(1)-O(9)	2.477(4)	O(4)-K(1)	2.948(6)
O(8)-Eu(1)-O(2)	108.58(16)	O(6)-Eu(1)-O(3)	74.47(13)
O(8)-Eu(1)-O(5)	81.80(14)	O(11)-Eu(1)-O(3)	144.00(13)
O(2)-Eu(1)-O(5)	137.53(13)	O(9)-Eu(1)-O(3)	121.98(13)
O(8)-Eu(1)-O(12)	81.83(15)	O(1W)-K(1)-O(2W)	80.05(19)
O(2)-Eu(1)-O(12)	148.36(14)	O(1W)-K(1)-O(1)	120.6(2)
O(5)-Eu(1)-O(12)	72.37(13)	O(2W)-K(1)-O(1)	78.81(17)
O(8)-Eu(1)-O(6)	144.21(13)	O(1W)-K(1)-O(4)	118.7(2)
O(2)-Eu(1)-O(6)	78.51(14)	O(2W)-K(1)-O(4)	80.75(16)
O(5)-Eu(1)-O(6)	71.43(13)	O(1)-K(1)-O(4)	111.53(18)
O(12)-Eu(1)O(6)	110.89(15)	O(1W)-K(1)-O(2)	96.5(2)
O(8)-Eu(1)-O(11)	137.86(13)	O(2W)-K(1)-O(2)	111.42(18)
O(2)-Eu(1)-O(11)	83.25(14)	O(1)-K(1)-O(2)	44.69(13)
O(5)-Eu(1)-O(11)	117.04(14)	O(4)-K(1)-O(2)	144.59(16)
O(12)-Eu(1)-O(11)	70.42(14)	O(6)-Eu(1)-O(9)	144.28(12)
O(6)-Eu(1)-O(11)	76.93(13)	O(11)-Eu(1)-O(9)	73.33(13)
O(8)-Eu(1)-O(9)	69.91(13)	O(8)-Eu(1)-O(3)	75.42(13)
O(2)-Eu(1)-O(9)	78.77(13)	O(2)-Eu(1)-O(3)	70.06(13)
O(5)-Eu(1)-O(9)	140.82(12)	O(5)-Eu(1)-O(3)	73.40(13)
O(12)-Eu(1)-O(9)	77.12(14)	O(12)-Eu(1)-O(3)	141.05(12)

 Table S7. Selected bond lengths and bond angles of 2b.

Pr(1)-O(7)	2.383(3)	Pr(1)-O(3)	2.442(2)
Pr(1)-O(4)	2.396(2)	Pr(1)-O(10)	2.449(2)
Pr(1)-O(1)	2.425(2)	Pr(1)-O(9)	2.516(2)
Pr(1)-O(11)	2.429(2)	Pr(1)-O(6)	2.566(2)

O(7)-Pr(1)-O(4)	109.58(10)	O(11)-Pr(1)-O(6)	142.41(8)
O(7)-Pr(1)-O(1)	83.02(9)	O(3)-Pr(1)-O(6)	73.82(8)
O(4)-Pr(1)-O(1)	135.49(8)	O(10)-Pr(1)-O(6)	143.87(8)
O(7)-Pr(1)-O(11)	81.58(10)	O(9)-Pr(1)-O(6)	121.93(8)
O(4)-Pr(1)-O(11)	148.89(8)	O(7)-Pr(1)-O(9)	68.62(8)
O(1)-Pr(1)-O(11)	73.26(8)	O(4)-Pr(1)-O(9)	80.26(8)
O(7)-Pr(1)-O(3)	145.14(8)	O(1)-Pr(1)-O(9)	141.47(8)
O(4)-Pr(1)-O(3)	77.55(9)	O(11)-Pr(1)-O(9)	77.12(9)
O(1)-Pr(1)-O(3)	70.29(8)	O(3)-Pr(1)-O(9)	144.84(8)
O(11)-Pr(1)-O(3)	110.31(10)	O(10)-Pr(1)-O(9)	73.21(8)
O(7)-Pr(1)-O(10)	135.95(8)	O(7)-Pr(1)-O(6)	77.43(8)
O(4)-Pr(1)-O(10)	84.19(9)	O(4)-Pr(1)-O(6)	68.44(8)
O(1)-Pr(1)-O(10)	116.76(9)	O(1)-Pr(1)-O(6)	73.50(8)
O(11)-Pr(1)-O(10)	69.03(9)	O(3)-Pr(1)-O(10)	77.69(8)

 Table S8. Selected bond lengths and bond angles of 2c.

Tb(2)-O(4)	2.292(3)	Tb(2)-O(9)	2.367(3)
Tb(2)-O(10)	2.312(3)	Tb(2)-O(1)	2.388(3)
Tb(2)-O(3)	2.332(3)	Tb(2)-O(6)	2.451(3)
Tb(2)-O(7)	2.361(3)	Tb(2)-O(12)	2.480(3)
O(4)-Tb(2)-(10)	108.25(12)	O(7)-Tb(2)-O(6)	140.29(9)
O(4)-Tb(2)-O(3)	82.69(11)	O(9)-Tb(2)-O(6)	144.00(9)
O(10)-Tb(2)-O(3)	148.01(10)	O(1)-Tb(2)-O(6)	73.47(9)
O(4)-Tb(2)-O(7)	81.08(10)	O(4)-Tb(2)-O(12)	74.35(9)
O(10)-Tb(2)-O(7)	138.27(9)	O(10)-Tb(2)-O(12)	70.96(10)
O(3)-Tb(2)-O(7)	72.03(9)	O(3)-Tb(2)-O(12)	140.53(10)
O(4)-Tb(2)-O(9)	143.63(9)	O(7)-Tb(2)-O(12)	73.00(10)
O(10)-Tb(2)-O(9)	78.50(10)	O(9)-Tb(2)-O(12)	74.53(9)
O(3)-Tb(2)-O(9)	110.84(11)	O(1)-Tb(2)-O(12)	143.06(9)
O(7)-Tb(2)-O(9)	72.18(9)	O(6)-Tb(2)-O(12)	122.45(9)
O(4)-Tb(2)-O(1)	139.61(9)	O(9)-Tb(2)-O(1)	76.08(9)
O(10)-Tb(2)-O(1)	81.69(10)	O(4)-Tb(2)-O(6)	70.63(9)

O(3)-Tb(2)-O(1)	71.73(10)	O(10)-Tb(2)-O(6)	78.52(9)
O(7)-Tb(2)-O(1)	117.93(10)	O(3)-Tb(2)-O(6)	77.11(10)

	e	č	
Dy(2)-O(7)	2.284(6)	Dy(2)-O(4)	2.348(5)
Dy(2)-O(2)	2.303(5)	Dy(2)-O(10)	2.370(6)
Dy(2)-O(12)	2.318(5)	Dy(2)-O(9)	2.438(5)
Dy(2)-O(6)	2.346(5)	Dy(2)-O(3)	2.461(5)
O(7)-Dy(2)-O(2)	107.3(2)	O(6)-Dy(2)-O(9)	143.47(18)
O(7)-Dy(2)-O(12)	82.4(2)	O(4)-Dy(2)-O(9)	140.45(18)
O(2)-Dy(2)-O(12)	147.84(19)	O(10)-Dy(2)-O(9)	73.84(18)
O(7)-Dy(2)-O(6)	143.99(18)	O(7)-Dy(2)-O(3)	74.05(19)
O(2)-Dy(2)-O(6)	78.7(2)	O(2)-Dy(2)-O(3)	71.09(19)
O(12)-Dy(2)-O(6)	111.7(2)	O(12)-Dy(2)-O(3)	140.29(19)
O(7)-Dy(2)-O(4)	81.6(2)	O(6)-Dy(2)-O(3)	74.77(19)
O(2)-Dy(2)-O(4)	138.71(18)	O(4)-Dy(2)-O(3)	73.17(19)
O(12)-Dy(2)-O(4)	72.09(19)	O(10)-Dy(2)-O(3)	143.39(18)
O(6)-Dy(2)-O(4)	72.51(19)	O(9)-Dy(2)-O(3)	122.37(18)
O(7)-Dy(2)-O(10)	139.80(18)	O(4)-Dy(2)-O(10)	117.0(2)
O(2)-Dy(2)-O(10)	82.5(2)	O(7)-Dy(2)-O(9)	70.59(18)
O(12)-Dy(2)-O(10)	71.67(19)	O(2)-Dy(2)-O(9)	77.92(18)
O(6)-Dy(2)-O(10)	75.58(18)	O(12)-Dy(2)-O(9)	76.7(2)

Table S9. Selected bond lengths and bond angles of 2d.

Table S10. Selected bond lengths and bond angles of 2e.

Er(1)-O(8)	2.262(4)	Er(1)-K(1)	4.332(3)
Er(1)-O(2)	2.277(5)	K(1)-O(1W)	2.618(8)
Er(1)-O(12)	2.298(4)	K(1)-O(2W)	2.805(8)
Er(1)-O(6)	2.324(4)	K(1)-O(1)	2.812(6)
Er(1)-O(5)	2.331(5)	K(1)-O(4)	2.922(6)
Er(1)-O(11)	2.348(4)	K(1)-O(2)	2.965(5)
Er(1)-O(9)	2.428(4)	K(1)-O(11)	3.051(6)
Er(1)-O(3)	2.446(4)	K(1)-O(10)	3.399(6)

O(4)-K(1)	2.922(6)		
O(8)-Er(1)-O(2)	106.97(18)	O(2W)-K(1)-O(4)	78.43(18)
O(8)-Er(1)-O(12)	82.33(17)	O(1)-K(1)-O(4)	110.37(19)
O(2)-Er(1)-O(12)	147.81(15)	O(1W)-K(1)-O(2)	100.0(2)
O(8)-Er(1)-O(6)	143.62(15)	O(2W)-K(1)-O(2)	110.16(18)
O(2)-Er(1)-O(6)	78.81(16)	O(1)-K(1)-O(2)	44.93(14)
O(12)-Er(1)-O(6)	112.25(17)	O(4)-K(1)-O(2)	145.07(15)
O(8)-Er(1)-O(5)	81.09(17)	O(1W)-K(1)-O(11)	80.31(19)
O(2)-Er(1)-O(5)	139.36(14)	O(2W)-K(1)-O(11)	78(18)
O(12)-Er(1)-O(5)	71.69(15)	O(1)-K(1)-O(11)	103.58(16)
O(6)-Er(1)-O(5)	73.13(15)	O(4)-K(1)-O(11)	122.62(17)
O(8)-Er(1)-O(11)	140.69(14)	O(2)-K(1)-O(11)	60.66(13)
O(2)-Er(1)-O(11)	82.13(16)	O(1W)-K(1)-O(10)	56.4(2)
O(12)-Er(1)-O(11)	72.50(15)	O(2W)-K(1)-O(10)	131.58(18)
O(6)-Er(1)-O(11)	75.16(14)	O(1)-K(1)-O(10)	142.03(17)
O(5)-Er(1)-O(11)	117.15(16)	O(4)-K(1)-O(10)	101.34(17)
O(8)-Er(1)-O(9)	71.24(15)	O(2)-K(1)-O(10)	97.21(14)
O(2)-Er(1)-O(9)	77.44(15)	O(11)-K(1)-O(10)	39.61(12)
O(12)-Er(1)-O(9)	76.71(16)	O(5)-Er(1)-O(3)	73.24(15)
O(6)-Er(1)-O(9)	143.02(15)	O(11)-Er(1)-O(3)	143.13(14)
O(5)-Er(1)-O(9)	140.25(14)	O(9)-Er(1)-O(3)	122.48(15)
O(11)-Er(1)-O(9)	73.85(14)	O(1W)-K(1)-O(2W)	79.5(2)
O(8)-Er(1)-O(3)	73.38(15)	O(1W)-K(1)-O(1)	122.3(3)
O(2)-Er(1)-O(3)	71.43(15)	O(2W)-K(1)-O(1)	76.47(18)
O(12)-Er(1)-O(3)	139.80(15)	O(1W)-K(1)-O(4)	115.0(2)
O(6)-Er(1)-O(3)	74.85(15)		

Table S11. Selected bond lengths and bond angles of 2f.

Yb(1)-(8)	2.238(4)	K(1)-O(1W)	2.580(9)
Yb(1)-O(2)	2.262(4)	K(1)-O(1)	2.792(6)
Yb(1)-O(12)	2.282(4)	K(1)-O(2W)	2.793(7)

Yb(1)-O(5)	2.304(4)	K(1)-O(4)	2.932(6)
Yb(1)-O(6)	2.314(4)	K(1)-O(2)	2.945(6)
Yb(1)-O(11)	2.325(4)	K(1)-O(11)	3.059(6)
Yb(1)-O(9)	2.411(4)	K(1)-O(10)	3.398(6)
Yb(1)-O(3)	2.427(4)	O(4)-K(1)	2.932(6)
Yb(1)-K(1)	4.324(3)		
O(8)-Yb(1)-O(2)	106.85(17)	O(1)-K(1)-O(4)	111.4(2)
O(8)-Yb(1)-O(12)	82.00(17)	O(2W)-K(1)-O(4)	77.77(18)
O(2)-Yb(1)-O(1)	147.61(15)	O(1W)-K(1)-O(2)	99.9(2)
O(8)-Yb(1)-O(5)	80.88(16)	O(1)-K(1)-O(2)	44.92(14)
O(2)-Yb(1)-O(5)	140.00(14)	O(2W)-K(1)-O(2)	110.98(18)
O(12)-Yb(1)-O(5)	71.39(15)	O(40-K(1)-O(2)	145.75(17)
O(8)-Yb(1)-O(6)	143.55(15)	O(1W)-K(1)-O(11)	80.43(19)
O(2)-Yb(1)-O(6)	78.85(16)	O(1)-K(1)-O(11)	103.05(15)
O(12)-Yb(1)-O(6)	112.81(16)	O(2W)-K(1)-O(11)	156.39(19)
O(5)-Yb(1)-O(6)	73.58(15)	O(4)-K(1)-O(11)	122.63(18)
O(8)-Yb(1)-O(11)	141.14(15)	O(2)-K(1)-O(11)	60.05(13)
O(2)-Yb(1)-O(11)	81.89(16)	O(1W)-K(1)-O(10)	56.3(2)
O(12)-Yb(1)-O(11)	73.05(15)	O(1)-K(1)-O(10)	141.30(17)
O(5)-Yb(1)-O(11)	117.01(16)	O(2W)-K(1)-O(10)	131.94(18)
O(2)-Yb(1)-O(9)	76.90(14)	O(11)-K(1)-O(10)	39.49(12)
O(12)-Yb(1)-O(9)	76.61(15)	O(6)-Yb(1)-O(3)	75.01(15)
O(5)-Yb(1)-O(9)	140.26(14)	O(11)-Yb(1)-O(3)	143.27(14)
O(6)-Yb(1)-O(9)	142.45(14)	O(9)-Yb(1)-O(3)	122.77(14)
O(11)-Yb(1)-O(9)	73.73(15)	O(1W)-K(1)-O(1)	122.1(3)
O(8)-Yb(1)-O(3)	72.92(14)	O(1W)-K(1)-O(2W)	79.9(2)
O(2)-Yb(1)-O(3)	72.14(15)	O(1)-K(1)-O(2W)	76.79(17)
O(12)-Yb(1)-O(3)	139.10(15)	O(1W)-K(1)-O(4)	114.3(2)
O(5)-Yb(1)-O(3)	73.09(15)		