## **Supporting information**

## Flower-like SnS<sub>2</sub> composite with 3D pyrolyzed bacterial cellulose as anode for lithium ion batteries with Ultralong Cycle Life and Superior Rate Capability

Xuejiao Liu,<sup>a</sup> Shixiong Li,<sup>a</sup> Jiantao Zai,<sup>a</sup> Ying Jin,<sup>b</sup> Peng Zhan,<sup>b</sup> Yong Huang,<sup>b</sup>

Xiaoyong Tie,<sup>c</sup> Rongrong Qi\*a and Xuefeng Qian\*a

a. Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China. Email: xfqian@sjtu.edu.cn, rrqi@sjtu.edu.cn

b. ZhongTian Emerging Materials Co. LTD, Nantong, 226000, China.

c. Hubei Land Resources Vocational College, Wuhan, 430090(P. R. China).



Figure S1. Nitrogen adsorption-desorption isotherms of the pBC (a) and as-prepared SnS<sub>2</sub> (b).



Figure S2. SEM image of pure  $SnS_2$  without addition of pBC.



Figure S3. Electrical conductivity measurement of pure  $SnS_2$ , pBC and as-prepared  $SnS_2$ -pBC.

S4: Caculation of relative content of SnS<sub>2</sub> and pBC:

To confirm the content of  $SnS_2$ , the as-prepared  $SnS_2$ -pBC was increased to 800 °C at a rate of 10 °C min<sup>-1</sup> and kept for 2h in air. And XRD pattern of the calcined product was indexed to hexagonal  $SnO_2$  (JCPDS 1-657, Figure S4). The total weight including the crucible before and after calcination are 35.7748 g and 35.7368 g, respectively. And the crucible is weighed as 35.6460 g. The detailed calculation are listed as follow:

 $w(SnS_2-pBC) = w(before calcination) - w(crucible) = 0.1288 g;$   $w(SnO_2) = w(after calcination) - w(crucible) = 0.0908 g;$   $w(SnS_2) = w(SnO_2) \times M(SnS_2)/M(SnO_2) = 0.1102 g;$   $con(SnS_2) = w(SnS_2)/w(SnS_2-pBC) \times 100\% = 85.5\%;$  $con(pBC) = 1 - con(SnS_2) = 14.5\%.$ 



Figure S4. XRD pattern of after calcined SnS<sub>2</sub>-pBC.



Figure S5. SEM and elements mapping of SnS<sub>2</sub>-pBC electrodes before cycling.

| Sample                                                  | Current | Specific capacity | Cycle | Ref/Year   |
|---------------------------------------------------------|---------|-------------------|-------|------------|
|                                                         | (A/g)   |                   |       |            |
|                                                         | 0.5     | 609               | 200   |            |
| SnS <sub>2</sub> -pBC                                   | 10      | 408.8             | 1500  | This work  |
|                                                         | 20      | 300.7             | 1500  |            |
| graphene/                                               | 0.5     | 638.1             | 150   | [1] / 2018 |
| SnS <sub>2</sub> /CC                                    | 2       | 419.4             | 50    |            |
| SnS <sub>2</sub> /CN                                    | 0.1     | 444.7             | 100   | [2] / 2018 |
| composite                                               | 1       | 350.8             | 100   |            |
| $SnP_{0.6}S_2$                                          | 0.5     | 404               | 200   | [3] / 2018 |
| SnS <sub>2</sub> @rGO                                   | 0.5     | 959.2             | 500   | [4] / 2018 |
|                                                         | 2       | 470.9             | 10    |            |
| CPN@SnS <sub>2</sub>                                    | 0.3     | 699.2             | 100   | [5] / 2017 |
|                                                         | 1.5     | 530               | 10    |            |
| SnS <sub>2</sub> /GNA                                   | 0.1     | 1050              | 60    |            |
| SnS <sub>2</sub> /GNA                                   | 0.1     | 1050              | 5     |            |
| GNA                                                     | 10      | 495               | 5     | [6] / 2018 |
| GNA                                                     | 0.1     | $\sim$ 500        | 60    |            |
| Al <sub>2</sub> O <sub>3</sub> -coated SnS <sub>2</sub> | 0.1     | 351.1             | 50    | [7] /2017  |
| SnS <sub>2</sub> NP/GNs                                 | 0.1     | $\sim \! 600$     | 150   | [8] /2017  |
|                                                         | 10      | 443               | 10    |            |
|                                                         | 20      | 378               | 10    |            |
| SnS <sub>2</sub> /NRGO                                  | 0.2     | 562               | 200   | [9] /2016  |
| SnS <sub>2</sub> nanoflower                             | 0.1     | 431.8             | 50    | [10] /2016 |

**Table S1** Reported electrochemical performance of SnS<sub>2</sub>-based electrodes and our work.

## References

- 1. Wang M, Huang Y, Zhu Y, et al. Journal of Alloys and Compounds, 2018. DOI: 10.1016/j.jallcom.2018.09.378
- 2. Yin L, Cheng R, Song Q, et al. Electrochimica Acta, 2018. DOI: 10.1016/j.electacta.2018.10.020
- 3. Choi H, Lee S, Eom K S.. Applied Surface Science, 2018. DOI: 10.1016/j.apsusc.2018.09.241
- 4. Lu X, Liu D, Han T, et al. Journal of Alloys and Compounds, 2018, 765: 1061-1071.
- 5. Chen X, Huang Y, Zhang K, et al. Chemical Engineering Journal, 2017, 330: 470-479.
- 6. Zhang Y, Zhao C, Zeng Z, et al. Electrochimica Acta, 2018, 278: 156-164.
- 7. Guan D, Ma L, Pan D, et al.. Electrochimica Acta, 2017, 242: 117-124.

- 8. Wei W, Jia F F, Wang K F, et al. Chinese Chemical Letters, 2017, 28(2): 324-328.
- 9. Youn D H, Stauffer S K, Xiao P, et al. ACS nano, 2016, 10(12): 10778-10788.
- 10. Guan D, Li J, Gao X, et al. Journal of Alloys and Compounds, 2016, 658: 190-197.