Reactivity of Rhodium and Iridium Peroxido Complexes towards Hydrogen in the Presence of $B(C_6F_5)_3$ or $[H(OEt_2)_2][B\{3,5-(CF_3)_2C_6H_3\}_4]$

Hanna Baumgarth, Gregor Meier, Cortney N. von Hahmann and Thomas Braun*

Supporting Information

Experimental section

General Methods and Instrumentation. All experiments were carried out in an argon atmosphere using standard Schlenk techniques. All solvents were purified and dried using conventional methods and distilled under argon. $B(C_6F_5)_3$ (sublimed before use) and $BCICy_2$ (1 M in hexane) were purchased from ABCR. *trans*-[Rh(4-C₅F₄N)(O₂)(CN*t*Bu)(PEt₃)₂] and *trans*-[Ir(4-C₅F₄N)(O₂)(CN*t*Bu)(PiPr₃)₂] were prepared according to literature procedures.¹ NMR analyses were carried out with a Bruker DPX 300 and Bruker Avance III 300 spectrometer. ¹H NMR chemical shifts were referenced to the residual proton signals of the deuterated solvents (toluene-d₈ at δ = 2.08 or THF-d₈ at δ = 1.80 ppm). The external reference for the ³¹P{¹H} NMR spectra was H₃PO₄ at δ = 0.0 ppm. ¹⁹F NMR spectra were referenced externally to C₆F₆ at δ = -162.9 ppm. The external reference for the ¹¹B and ¹¹B{¹H} NMR was BF₃·OEt₂ at δ = 0.0 ppm. IR spectra were recorded using a Bruker Vertex 70 spectrometer, which was equipped with an ATR unit (diamond). HR-ESI-MS analyses were carried out with an Agilent 6210 ToF spectrometer with electro spray ionization (ESI). Gastight syringes were used to directly introduce the sample into the nebulizer. The source was cooled down to 50°C and a fragmentation voltage of 100mV was used.

Hydrogenation of trans-[Rh(4-C₅F₄N)(O₂)(CNtBu)(PEt₃)₂] (1) with H₂ in the presence of B(C₆F₅)₃

a) Toluene-d₈ was condensed into a *Young*[®]-NMR tube filled with *trans*-[Rh(4-C₅F₄N)-(O₂)(CNtBu)(PEt₃)₂] (**1**, 24 mg, 0.04 mmol) and B(C₆F₅)₃ (21 mg, 0.04 mmol) at -196°C. An H₂ atmosphere (1.013 bar) was added. The solution was kept at -70°C for 15 min and shaken regularly, whereupon the colour changed from red-orange to pale yellow and very small amounts of a red-brown solid precipitated. The reaction mixture was examined by NMR spectroscopy after reaching room temperature. ³¹P{¹H} NMR measurements revealed the presence of OPEt₃², *trans*-[Rh(4-C₅F₄N)(CNtBu)(PEt₃)₂] (**3**) and a resonance for another rhodium complex. Integration of the resonance signals of the rhodium complex **3** and the unknown compound showed a ratio of 7:1. (H₂O)·B(C₆F₅)₃ was identified by comparison of NMR data with an authentic sample. The red-brown precipitate could not be identified and IR spectroscopic measurements showed no absorption bands characteristic for CNtBu ligands.

b) Into a *Young*[®]-NMR tube containing *trans*-[Rh(4-C₅F₄N)(O₂)(CN*t*Bu)(PEt₃)₂] (**1**, 24 mg, 0.04 mmol) and B(C₆F₅)₃ (21 mg, 0.04 mmol), a solution of PEt₃ (6 μ L, 5 mg, 0.04 mmol) in toluene-d₈ (0.7 mL) was transferred. Afterwards, dihydrogen (1.013 bar) was added. The reaction mixture was allowed to warm up to -70°C and after 15 min to room temperature. (H₂O)·B(C₆F₅)₃ was identified by comparison

of NMR data with an authentic sample. NMR spectroscopic analysis showed the presence of $OPEt_3^2$, *trans*-[Rh(4-C₅F₄N)(CN*t*Bu)(PEt₃)₂] (**3**) and the unknown rhodium complex, in a ratio of 11:1 for the two rhodium compounds (determined by ³¹P{¹H} NMR spectroscopy). The volatiles were removed in vacuo and collected in an external cooling trap. There was no evidence for the formation of H₂O₂, tested with Quantofix[®] peroxide test sticks and a reaction with titanylsulfate solution.

³¹P{¹H} NMR data for the unknown rhodium compound: ³¹P{¹H} NMR (121.5 MHz, toluene-d₈, 25 °C): δ = 20.2 ppm (d, ¹J_{Rh.P} = 134.0 Hz).

Analytical data for $(H_2O) \cdot B(C_6F_5)_3$:³

¹H NMR (300.1 MHz, toluene-d₈): δ = 4.66 ppm (s, br, 2 H; (H₂O)·B(C₆F₅)₃).

¹⁹F NMR (282.4 MHz, toluene-d₈): δ = -135.2 (dd, ³J_{F,F} =23.4, ⁴J_{F,F} = 8.3 Hz, 6 F; *ortho*-CF), -154.8 (t, ³J_{F,F} = 20.6 Hz, 3 F; *para*-CF), -162.8 ppm (m, 6 F; *meta*-CF).

¹¹B{¹H} NMR (96.3 MHz, toluene-d₈): δ = -2.0 ppm (br).

 $^{31}P{^{1}H}$ NMR spectrum of the reaction mixture of **1** with H₂ in the presence of B(C₆F₅)₃ after 2 days, when no additional phosphine is present.

¹⁹F NMR spectrum of the reaction mixture of **1** with H_2 in the presence of $B(C_6F_5)_3$ after 2 days, when no additional phosphine is present.

Reduction of trans-[Rh(4-C₅F₄N)(O₂)(CNtBu)(PEt₃)₂] (1) with D₂ in presence of $B(C_6F_5)_3$

PEt₃ (6 μ L, 5 mg, 0.04 mmol) was dissolved in toluene-d₈ (0.7 ml) and the solution was transferred into a *Young*[®]-NMR tube containing *trans*-[Rh(4-C₅F₄N)(O₂)(CN*t*Bu)(PEt₃)₂] (**1**, 24 mg, 0.04 mmol) and

 $B(C_6F_5)_3$ (21 mg, 0.04 mmol) at -196°C. D_2 was added (1.013 bar) and the reaction mixture was kept at -70°C for 15 min and shaken regularly. The colour changed from red-orange to pale yellow. At room temperature, NMR spectroscopy revealed the formation of *trans*-[Rh(4-C₅F₄N)(CN*t*Bu)(PEt₃)₂] (**3**), OPEt₃² and (D₂O)·B(C₆F₅)₃.

Analytical data for $(D_2O) \cdot B(C_6F_5)_3$:

¹⁹F NMR (282.4 MHz, toluene-d₈): δ = -135.2 (dd, ³J_{F,F} =23.4, ⁴J_{F,F} = 8.3 Hz, 6 F; *ortho*-CF), -154.8 (t, ³J_{F,F} = 20.6 Hz, 3 F; *para*-CF), -162.8 ppm (m, 6 F; *meta*-CF). ¹¹B{¹H} NMR (96.3 MHz, toluene-d₈): δ = -2.0 ppm (br).

Reaction of PEt_3 with $B(C_6F_5)_3$

 $B(C_6F_5)_3$ (13 mg, 0.03 mmol) was dissolved in a solution of PEt₃ (5.5 µL, 0.04 mmol) and toluene-d₈ (0.4 ml). ³¹P{¹H} and ¹⁹F NMR spectroscopy revealed the formation of Et₃P·B(C₆F₅)₃ which was compared to literature⁴.

Reaction of trans-[Rh(4-C₅F₄N)(O₂)(CNtBu)(PEt₃)₂] (1) with $B(C_6F_5)_3$

Compound **1** (10 mg 0.02 mmol) was dissolved in toluene-d₈ (0.4 ml) and $B(C_6F_5)_3$ (8.5 mg, 0.02 mmol) was added at room temperature. The formation of $Et_3PO \cdot B(C_6F_5)_3$ was observed after 1 h in the ³¹P{¹H} NMR spectrum along with resonances in the ¹⁹F NMR spectrum. The ³¹P{¹H} NMR was compared to literature.⁵

Reaction of trans- $[Ir(4-C_5F_4N)(O_2)(CNtBu)(PiPr_3)_2]$ (2a) with $B(C_6F_5)_3$

Compound **2a** (9 mg 0.01 mmol) was dissolved in THF-d₈ (0.5 ml) and $B(C_6F_5)_3$ (6 mg, 0.01 mmol) was added at room temperature. The formation of an unknown iridium complex was observed after 1 h along with some resonances with low intensity. The reaction mixture was then cooled down to -50°C added (1.2 μl, 0.01 mmol). The iridium complex and pyridine was trans- $[Ir(4-C_5F_4N)(O_2)(CNtBu)(PiPr_3)_2]$ (2a) was identified as the main product by NMR spectroscopy.^{1b} An analogous reaction was observed when 2a (8 mg, 0.01 mmol), B(C₆F₅)₃ (5 mg, 0.01 mmol) and lutidine (1 μ l, 0.01 mmol) were used.

Analytical data for the unknown iridium compound:

³¹P{¹H} NMR (121.5 MHz, THF-d₈): δ = 83.0 (br) ppm.

Reaction of trans-[Ir(4-C₅F₄N)(O₂)(CNtBu)(PiPr₃)₂] (2a) with H₂ in presence of B(C₆F₅)₃

 $B(C_6F_5)_3$ (10 mg, 0.02 mmol) was added to a solution of *trans*-[Ir(4-C₅F₄N)(O₂)(CNtBu)(PiPr₃)₂] (2a), 15 mg, 0.02 mmol) in toluene-d₈ at -80°C. The solution was degassed three time using the freezepump-thaw method. H₂ was added to the frozen solution and the reaction mixture was allowed to warm up to room temperature. After 18 h, (H₂O)·B(C₆F₅)₃ was identified through comparison with an authentic sample. No iridium species could be identified, although **2a** was fully converted.

Reaction of trans-[Ir(4-C₅F₄N)(O₂)(CNtBu)(PiPr₃)₂] (2a) with BClCy₂

a) $BCICy_2$ (82 µl, 0.08 mmol, 1 M in hexane) was added to a solution of *trans*-[Ir(4-C₅F₄N)(O₂)(CNtBu)(P*i*Pr₃)₂] (**2a**, 32 mg, 0.04 mmol) in benzene (5 ml) at room temperature and the reaction mixture was stirred for 2.5 h. The volatiles where removed in vacuo. The resulting solid was washed with hexane (4 x 0.5 ml) and lyophilized in toluene-d₈. The complex *cis,trans*-[Ir(4-C₅F₄N)(Cl)₂(CNtBu)(P*i*Pr₃)₂] (**5**) was identified by NMR, IR and ESI-MS spectroscopy. ^{1b} Cy₂BOBCy₂ and (CyBO)₃ were identified as borane species by NMR.

b) BClCy₂ (13 µl, 0.01 mmol, 1 M in hexane) and PiPr₃ (2.5 µl, 0.01 mmol) were dissolved in C_6D_6 and the solution was transferred to *trans*-[Ir(4- C_5F_4N)(O_2)(CN*t*Bu)(P*i*Pr₃)₂] (**2a**, 10 mg, 0.01 mmol) using a PTFE cannula. Based on the obtained IR and HR-FT-ESI-MS data, *trans*-[Ir(4- C_5F_4N)(Cl)(OOBCy₂)-(CN*t*Bu)(P*i*Pr₃)₂] is proposed as the intermediate.

Analytical data for *trans*-[Ir(4-C₅F₄N)(Cl)(OOBCy₂)(CNtBu)(PiPr₃)₂] (4a):

¹H NMR (300.1 MHz, C_6D_6): δ = 2.85 (m, CH), 1.19 (m, CH(CH₃)₂), 1.05 (s, C(CH₃)₃) ppm, integration of the resonances is not possible due to overlap with signals of the starting material and product as well as with cyclohexyl- and hexane-resonances.

¹¹B NMR (96.3 MHz, toluene-d₈): δ = 4 (s, br), 0 (s, br) ppm.

¹⁹F NMR (282.4 MHz, C₆D₆): δ = -99.3 (m, 1 F, Ar_F), -100.1 (m, 1 F, Ar_F), -112.8 (m, 1 F, Ar_F), -122.0 (m, 1 F, Ar_F) ppm.

³¹P{¹H} NMR (121.5 MHz, C_6D_6): δ = -5.9 (s) ppm.

IR (ATR): $\tilde{\nu} = 2160$ (s, CN), 821 (m, ${}^{16}O{}^{16}O$) cm⁻¹.

FT-ESI-MS: calcd. for $[M+H]^+$ with $[M] = C_{40}H_{73}BClF_4IrN_2O_2P_2$: m/z = 991.457; found m/z = 991.405.

Analytical data for Cy₂BOBCy₂:

¹¹B NMR (96.3 MHz, toluene-d₈): δ = 52 (br) ppm.

Analytical data for (CyBO)₃:

¹¹B NMR (96.3 MHz, toluene-d₈): δ = 30 (br) ppm.

Reaction of trans-[Ir(4-C₅F₄N)(¹⁸O₂)(CNtBu)(PiPr₃)₂] (2b) with BClCy₂

The complex *trans*-[Ir(4-C₅F₄N)(¹⁸O₂)(CN*t*Bu)(P*i*Pr₃)₂] (**2b**, 12 mg, 0.02 mmol) was dissolved in benzene (0.9 ml) and the solution was treated at room temperature with P*i*Pr₃ (5 μ l, 0.03 mmol) and subsequently with BClCy₂ (19 μ l, 0.02 mmol, 1 M in hexane). After 30 min, the formation of an intermediate was observed by IR and mass spectroscopy, that was assigned to be *trans*-[Ir(4-C₅F₄N)(Cl)(¹⁸O¹⁸OBCy₂)(CN*t*Bu)(P*i*Pr₃)₂] (**4b**). The final product is *cis,trans*-[Ir(4-C₅F₄N)(Cl)₂(CN*t*Bu)(P*i*Pr₃)₂] (**5**).^{1b}

Analytical data for *trans*- $[Ir(4-C_5F_4N)(CI)(^{18}O^{18}OBCy_2)(CNtBu)(PiPr_3)_2]$ (4b):

IR (ATR): $\tilde{\nu}$ = 787 (m, ¹⁸O¹⁸O) cm⁻¹.

FT-ESI-MS: calcd. for $[M+H]^+$ with $[M] = C_{40}H_{73}BCIF_4IrN_2^{18}O_2P_2$: m/z = 995.466; found m/z = 995.400.

Hydrogenation of *trans*-[Rh(4-C₅F₄N)(O₂)(CN*t*Bu)(PEt₃)₂] (1) with H₂ in presence of [H(OEt₂)₂][B{3,5-(CF₃)₂C₆H₃}₄]

a) THF-d₈ (0.8 ml) was condensed at -196°C into a *Young*[®]-NMR tube containing a mixture of $[H(OEt_2)_2][B\{3,5-(CF_3)_2C_6H_3\}_4]$ (43 mg, 0.04 mmol) and *trans*- $[Rh(4-C_5F_4N)(O_2)(CNtBu)(PEt_3)_2]$ (**1**, 29 mg, 0.05 mmol). Dihydrogen was added (1.013 bar). The reaction mixture was kept at -70°C for 15 min and shaken regularly, whereupon the colour changed from red-orange to pale yellow. The solution was allowed to warm up to room temperature and studied by NMR and IR spectroscopy.

After two days, *trans*-[Rh(4-C₅F₄N)(CNtBu)(PEt₃)₂] (**3**) and *trans*-[Rh(CNtBu)₂(PEt₃)₂][B{3,5-(CF₃)₂C₆H₃}] were identified (ratio 3:2, determined by ³¹P{¹H} NMR spectroscopy). The volatiles were then removed in vacuo and collected in a separate cooling trap. Decolouration of Quantofix[®] peroxide test sticks and a test with an aqueous titanylsulfate solution provided evidence for the presence of hydrogen peroxide, along with a broad resonance in the ¹H NMR spectrum at δ = 2.89 ppm.

b) To a *Young*[®]-NMR tube containing [H(OEt₂)₂][B{3,5-(CF₃)₂C₆H₃}] (5.4 mg, 0.005 mmol) and *trans*-[Rh(4-C₅F₄N)(O₂)(CN*t*Bu)(PEt₃)₂] (**1**, 32 mg, 0.05 mmol) was added THF-d₈ (0.8 ml) via condensation at -196°C. An H₂ atmosphere (1.013 bar) was added. Primarily, the solution was allowed to warm up to -70°C (and shaken regularly) and after 15 min to room temperature. The colour changed from redorange to pale yellow. The reaction mixture was analysed by NMR and IR spectroscopy. After two days, *trans*-[Rh(4-C₅F₄N)(CN*t*Bu)(PEt₃)₂] (**3**) and *trans*-[Rh(CN*t*Bu)₂(PEt₃)₂][B{3,5-(CF₃)₂C₆H₃}] were again identified as the only compounds present (ratio 8:1, determined by ³¹P{¹H} NMR spectroscopy). The formation of H₂O₂ was confirmed Quantofix[®] peroxide test sticks and reaction with titanylsulfate solution.

Analytical data for *trans*-[Rh(CNtBu)₂(PEt₃)₂][B{3,5-(CF₃)₂C₆H₃}₄]:⁶

IR (ATR, evaporation of a THF-d₈ reaction mixture): $\tilde{v} = 2212 \text{ cm}^{-1}$ (w, br; CN*t*Bu).

¹H-NMR (300.1 MHz, THF-d₈): δ = 7.80 (m, 8 H; *ortho*-CH_{Ar}), 7.59 (m, 4H; *para*-CH_{Ar}), 1.87 (m, 12 H; CH₂CH₃), 1.53 (s, 18 H; C(CH₃)₃), 1.07 ppm (dt, ³J_{P,H} = 15.6, ³J_{H,H} = 7.7 Hz, 18 H; CH₂CH₃).

¹⁹F NMR (282.4 MHz, THF-d₈): δ = -63.4 ppm (s).

¹¹B{¹H} NMR (96.3 MHz, THF-d₈): δ = -6.8 ppm (s).

³¹P{¹H} NMR (121.5 MHz, v): δ = 23.3 ppm (d, ¹J_{Rh,P} = 116.0 Hz).

Reduction of trans-[Rh(4-C₅F₄N)(O₂)(CNtBu)(PEt₃)₂] (1) with D₂ in presence of [H(OEt₂)₂][B{3,5-(CF₃)₂C₆H₃}₄]

To $[H(OEt_2)_2][B\{3,5-(CF_3)_2C_6H_3\}_4]$ (45 mg, 0.04 mmol) and *trans*- $[Rh(4-C_5F_4N)(O_2)(CNtBu)(PEt_3)_2]$ (**1**, 30 mg, 0.05 mmol) in a *Young*[®]-NMR tube, THF-d₈ (0.8 ml) was added via condensation at -196°C. D₂ was then added (1.013 bar) and the reaction mixture was allowed to warm up. At -70°C, the solution was kept for 15 min and shaken regularly, whereupon the colour changed from red-orange to pale yellow. After two days, *trans*- $[Rh(4-C_5F_4N)(CNtBu)(PEt_3)_2]$ (**3**) and *trans*- $[Rh(CNtBu)_2(PEt_3)_2][B\{3,5-(CF_3)_2C_6H_3\}_4]$ were identified as the only complexes (ratio 3:2, determined by ³¹P{¹H} NMR spectroscopy). The volatiles were removed in vacuo and the formation of H₂O₂ was confirmed by the decolouration of Quantofix[®] peroxide test sticks and a test with an aqueous titanylsulfate solution.

The broad signal for H_2O_2 in ¹H NMR spectrum at δ = 2.89 ppm could not be detected in the reaction with D_2 .

Notes and References

- (a) M. Ahijado, T. Braun, D. Noveski, N. Kocher, B. Neumann, D. Stalke, H.-G. Stammler, Angew. Chem., 2005, **117**, 7107; Angew. Chem. Int. Ed., 2005, **44**, 6947; (b) H. Baumgarth, G. Meier, T. Braun, B. Braun-Cula, *Eur. J. Inorg. Chem.*, 2016, **28**, 4565.
- 2 S. Hawkeswood, D. W. Stephan, *Dalton Trans.*, 2005, **12**, 2182.
- (a) T. Beringhelli, D. Maggioni, G. D'Alfonso, *Organometallics*, 2001, 20, 4927; (b) C. Bergquist, B. M. Bridgewater, C. J. Harlan, J. R. Norton, R. A. Firesner, G. Parkin, J. Am. Chem. Soc., 2000, 122, 10581; (c) A. A. Danopoulos, J. R. Galsworthy, M. L. H. Green, S. Cafferkey, L. H. Doerrer, M. B. Hursthouse, *Chem. Commun.*, 1998, 22, 2529.
- 4 (a) K. Huynh, A. J. Lough, M. A. M. Forgeron, M. Bendle, A. Presa Soto, R. E. Wasylishen,
 I. Manners, J. Am. Chem. Soc., 2009, 131, 7905; (b) G. C. Welch, R. Prieto. M. A. Dureen,
 A. J. Louch, O. A. Labeodan, T. Höltrichter-Rössmann, D. W. Stephan, Dalton Trans., 2009, 1559.
- (a) M. Mewald, R. Fröhlich, M. Oestreich, *Chem. Eur. J.*, 2011, 17, 9406; (b) M. A. Dureen,
 C. C. Brown, D. W. Stephan, *Organometallics*, 2010, 29, 6422.
- 6 The ³¹P{¹H} NMR of the cation *trans*-[Rh(CN*t*Bu)₂(PEt₃)₂]⁺ in *trans*-[Rh(CN*t*Bu)₂(PEt₃)₂][B{3,5-(CF₃)₂C₆H₃}] is comparable with the NMR data of the cationic rhodium compound *trans*-[Rh(CN*t*Bu)₂(PEt₃)₂][Rh{ κ^2 -(*O*,*O*)-*O*C(*O*)*O*]₂(PEt₃)₂] from: H. Baumgarth, *Rhodiumkomplexe mit fluorierten Liganden zur Aktivierung von Disauerstoff*, diploma thesis, Humboldt-Universität zu Berlin, 2012.