Supporting Information

Towards highly active and stable Nickel-based Metal-Organic Frameworks as Ethylene Oligomerization Catalysts

Ubed SF. Arrozi^a, Volodymyr Bon^a, Christel Kutzscher^a, Irena Senkovska^a, Stefan Kaskel^a

Technische Universität Dresden, Department of Chemistry, Institute of Inorganic Chemistry, Bergstraße 66, D-01062 Dresden, Germany

Figure S1. PXRD patterns of CPO-27(Ni) (1): theoretical pattern calculated from the crystal structure, [CCDC 288477] (top); after desolvation at 250 °C in vacuum (middle), after stirring in toluene in the presence of the Et_2AlCl overnight (bottom).

Figure S2. PXRD patterns of $[Ni(bdc)(dabco)_{0.5}]_n$ (4): theoretical pattern calculated from the crystal structure, CCDC 802893 (top); activated $[Ni(bdc)(dabco)_{0.5}]_n$ (middle), after stirring in toluene in the presence of the Et₂AlCl overnight (bottom).

Figure S3. PXRD patterns of $[Ni(bdc)(dabco)]_n$ (2): theoretical pattern calculated from the crystal structure (top) [CCDC 802894]; activated (middle), after stirring in toluene in the presence of the Et₂AlCl overnight (bottom).

Figure S4. PXRD patterns of $[Ni(ndc)(dabco)_{0.5}]_n$ (DUT-8(Ni)) (5/6): theoretical pattern of the open pore form of DUT-8(Ni) calculated from the crystal structure [CCDC 760964] (1); theoretical pattern of the closed pore form DUT-8(Ni) calculated from the crystal structure [CCDC 1034317] (2); activated DUT-8(Ni)_rigid (3); activated DUT-8(Ni)_flexible (4); DUT-8(Ni)_flexible compound stirred in toluene (showing the opening of the pores) (5); and DUT-8(Ni)_rigid after stirring in toluene in the presence of the Et₂AlCl overnight (6).

Figure S5. PXRD patterns of $[Ni_3(ndc)_3(DMF)_2((CH_3)_2NH)_2]_n$ (**3**): theoretical pattern calculated from the crystal structure [CCDC 759306] (top); activated (middle), after stirring in toluene in the presence of the Et₂AlCl overnight (bottom).

Figure S6. SEM images of: a) CPO-27(Ni) (1), b) $[Ni(bdc)(dabco)]_n$ (2), c) $[Ni_3(ndc)_3(DMF)_2((CH_3)_2NH)_2]_n$ (3), d) $[Ni(bdc)(dabco)_{0.5}]_n$ (4); e) DUT-8(Ni)_rigid (5), f) DUT-8(Ni)_flexible (6), and g) DUT-128 (7). ImageJ software package was used to calculate crystal size distribution.

Figure S7. ATR-IR spectra of 2,5-dihydroxyterephthalic acid (2,5-dhtpa) (top) and CPO-27(Ni) (1) (bottom).

Figure S8. ATR-IR spectra of 1,4-benzenedicarboxylic acid (H_2bdc) (top) and $[Ni(bdc)(dabco)_{0.5}]_n$ (4) (bottom).

Figure S9. ATR spectra of 1,4-benzenedicarboxylic acid (H₂bdc) (top), dabco (middle) and $[Ni(bdc)(dabco)]_n$ (2) (bottom).

Figure S10. ATR-IR spectra (from top to bottom) of 2,6-naphtalenedicarboxylic acid (H₂ndc), dabco, $[Ni(ndc)(dabco)_{0.5}]_n$ rigid (DUT-8(Ni)_rigid, **5**) and $[Ni(ndc)(dabco)_{0.5}]_n$ flexible (DUT-8(Ni)_flexible, **6**).

Figure S11. ATR spectra of 2,6-naphtalenedicarboxylic acid (H₂ndc) (top) and $[Ni_3(ndc)_3(DMF)_2((CH_3)_2NH)_2]_n$ (3) (bottom).

Figure S12. ATR spectra of 4,4'-biphenyldicarboxylic acid (H₂bpdc) (top), dabco (middle) and DUT-128 (7) (bottom).

Figure S13. N_2 physisorption isotherm of CPO-27(Ni) (1) at 77 K. Solid symbols – adsorption, empty symbols – desorption.

Figure S14. N₂ physisorption isotherms of $[Ni(bdc)(dabco)]_n$ (2) and $[Ni(bdc)(dabco)_{0.5}]_n$ (4) at 77 K. Solid symbols – adsorption, empty symbols – desorption.

Figure S15. N₂ physisorption isotherms of $[Ni_3(ndc)_3(DMF)_2((CH_3)_2NH)_2]_n$ (3) (blue), DUT-8(Ni)_rigid (5) (black), DUT-8(Ni)_flexible (6) (red), and at 77 K. Solid symbols – adsorption, empty symbols – desorption.

Table S1. Surface area and pore volume of investigated Ni-MOFs.

Ni-MOFs	BET area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)
CPO-27(Ni) (1)	1223	0.5
$[Ni(bdc)(dabco)]_n(2)$	19	0.1
$[Ni_3(ndc)_3(DMF)_2((CH_3)_2NH)_2]_n(3)$	12	0.02
$[Ni(bdc)(dabco)_{0.5}]_n(4)$	1983	0.9
DUT-8(Ni)_rigid (5)	1899	0.9
DUT-8(Ni)_flexible (6)	-	1.0
DUT-128 (7)	850	0.8

Figure S16. PXRD patterns of DUT-128 (7) from top to bottom: theoretical PXRD pattern of $[Ni(L-proline-bpdc)(dabco)_{0.5}]_n$ [CCDC 1835717]; DUT-128 as-made; DUT-128 activated; activated DUT-128 immersed in toluene; and DUT-128 after stirring in toluene in the presence of the Et₂AlCl overnight. The new peak (*) in the PXRD patterns of activated sample and sample after immersion in toluene can be assigned to the closed pore phase as observed for DUT-8(Ni).

Figure S17. N_2 physisorption isotherm of DUT-128 (7) at 77 K. Solid symbols – adsorption, empty symbols – desorption.

Figure S18. Typical chromatogram of products formed in ethylene oligomerization reaction catalyzed by DUT-8(Ni)_rigid (5) at 10 bar (top), 20 bar (middle), and 30 bar (bottom).

Figure S19. Typical chromatogram of the cyclic reaction products catalyzed by $[NiCl_2(bpy)]$ (top) and $[Ni_3(ndc)_3(DMF)_2((CH_3)_2NH)_2]_n$ (3) (bottom). C₈ oligomers could not be detected due to the peak overlap with broad signal of the toluene.

Figure S20. Ethylene consumption in leaching test using $[Ni_3(ndc)_3(DMF)_2((CH_3)_2NH)_2]_n$ (3) as catalyst.

Figure S21. ¹H NMR of ethylene oligomerization products formed in the reaction catalyzed by $[Ni_3(ndc)_3(DMF)_2((CH_3)_2NH)_2]_n$ (3) at 1 bar ethylene pressure and 21 °C.