Electronic Supplementary Information

The catalytic behaviour in aqueous-phase hydrogenation over a

renewable Ni catalyst derived from perovskite-type oxide

Chun Chen,^a Ruoyu Fan,^a Wanbing Gong,^a Haimin Zhang,^a Guozhong Wang^a and

Huijun Zhao*^{ab}

^a Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China

^b Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222, Australia

Address correspondence to h.zhao@griffith.edu.au; gzhwang@issp.ac.cn

Fig. S1 The comparison of Ni catalyst with Cu and Pd/Pt catalysts in hydrogenation of

furfural

Fig. S2 The morphology of LaNiO $_3$ precursor and Ni-LN650.

(a) SEM image of LaNiO₃, (b) SEM image of Ni-LN650, (c) TEM image of Ni-LN650.

Fig. S3 Adsorption and desorption isotherm curves of Ni-LN550, Ni-LN650 and Ni-

LN750 catalysts.

Fig. S4 the CO pulse chemisorption for Ni-LN550, Ni-LN650, Ni-LN750, Ni-LN850 and Ni-LN650 (after reaction)

Fig. S5 The XRD patterns of LaNiO₃ precursor derived at different calcination temperatures.

Fig. S6 The XRD patterns of Ni catalysts derived from the LaNiO₃ precursors calcining at different temperatures.

Fig. S7 The H₂-TPR profiles of LaNiO₃ precursor derived at different calcination temperatures.

Fig. S8 The XPS spectra of La 3d+ Ni 2p, Ni3p and O 1s for the Ni-LN550, Ni-LN650 and Ni-LN750 catalysts.

Fig. S9 The influence of calcination time on furfural conversion and product selectivity in aqueous-phase hydrogenation of furfural at 120 $^{\circ}$ C and 1 MPa H₂. Other conditions: 1.0 mmol furfural, 30 mg catalyst, 10 mL DI water, stirring speed 800 rpm.

		5.85 6.06	6.52 8.75 С но	5 7.18 ОН ОН	10.25	9.08	
D:\CC\DATA\20180829\150		8/30/2018 01:36:07					
RT: 0.00	- 23.90	5 a5	9.08				NL:
50	60 °C	4.24 5.07 5.78 6.06 6.21 7.82	8,29 9.82 10.25 10,88	12.01 12.55 13. <u>69</u> 14.22	14.77 15.39 16. <u>77</u> 17.18	18.49 <u>18</u> .95 20.15 21	8.32E8 TIC MS 60 1.33 22.53 23.35
100 50	80 °C	5.84 4.24 5.07 5.57 6.06 4.25 7.82	9.05 8.18 9.29 10.26 10.88	12 <u>0</u> 3 12.56 13 <u>.82</u> 14. <u>1</u> 8	14.78 18 <u>25</u> 16.77 17. <u>6</u>	<u>80 18.48</u> 19.00 19.99 2'	NL: 5.35E8 TIC M5 80 1.46 22.04 22.53 23.32
100 50	100 °C	5.85 0.09 4.26 5.08 5.58 0 6.52 7.31 7.83	9.07 8. <u>98 9.30 10.26 10.88</u>	12. <u>01</u> 12.43 13. <u>89</u> 14.16	14 <u>.</u> 78 <u>15</u> .31 16.77 17. <u>8</u>	<u>80 18,49 19.00 20.15 20,61</u>	NL: 6.83E8 TIC MS 100 21. <u>96</u> 22.32 22.72
International Contraction	120 °C	6.53 4.26 4.40 5.87 6.08 6.83 7.83	9.06 8.19 9.30 9.83 10.89	11.78 12.58 13. <u>73 14.2</u> 1	14.79 15,39 18.78 1 <u>7</u> ,3	1 18.49 19 _. 49 20.15 <u>2</u>	NL: 5.44E8 TIC MS 120 1.42 22.33 22.67
50 TIT	130 °C	6.52 4.22 5.07 5.57 6.77 7.83	9.06 8.19 9.44 10.13 10.89	12 <u>0</u> 3 12.56 13.74	14.79 18 <u>.44</u> 18.78 18	8. <u>10</u> 18.49 19. <u>78</u> 20.16 20.96	NL: 5.15E8 TIC MS 140 22. <u>33</u> 22.70 <u>23</u> .11
100 50	140 °C	6.52 4.22 5.07 5.57 6.77 7.83	9.06 8_19 9.44 10.13 10.89	12 <u>0</u> 3 12.56 13.74	14.79 10 <u>.44</u> 10.78 18	3 <u>,10</u> 18.49 19 <u>,78</u> 20.16 20.96	NL: 5.15E8 TIC MS 140 22.33 22.70 23,11
100 50	150 °C	6.56 4.22 5.06 5.57 0.94 7.83	8.75 9.83 10.89	11.99 12.57 13.14 <u>13.</u> 60	14.79 15,41 16.78 18	3. <u>09</u> 18.50 19.51 20.15 2	21.43 22.51 23.02
100 50 0	170 °C	4.24 4.38 5.58 6.22 7.18 4.5 6 7 8	8.73	12 <u>0</u> 3 12.57 <u>12.93</u> 14.05 12 13 14	14.79 15.39 16.78 <u>17.2</u>	2 18.50 19,15 20.16 20,83 18 19 20 21	21_43_22.33_22_81 22_22_23
	55.79			Time (min)			
	80,22 7101 81,92 99,85 10,00 10,00,00,00,00,00 80 80 10,00 12	, 125,57 (39,12, 146,59, 164,45, 172,54, 175,55, 193,34 1 40 46 160 200	206.75 215.30 220.93 241.30 249.13 220 240	26554 27596 264.57 204.92 313 260 280 300 m/z	er 220,8e 2 30,12 268,85 3 220 240 260	74.50 <u>297.39</u> 403.05 4 0.55 4 32.94 42 350 450 420	17.56 447.71 456.81 467.22 476.10 492.17 440 480 800

Fig. S10 The GC-MS spectrogram of liquid products obtained at different reaction

temperature.

Fig. S11 The scission of THFOL at α and β positions.

Fig. S12 The concentration of FOL and THFOL in the liquid product by using FOL as reactant.

Reaction condition: 120 °C, 1 MPa H2, 1 mmol FOL, 30 mg Ni-LN650, 10 mL DI water, stirring speed 800 rpm.

Fig. S13 The GC-MS spectrogram for aqueous-phase hydrogenation of aldehydes, alkene and carboxylic acid over Ni-LN650 catalyst

Ni content (%)ª	Ni	Metallic	Active Ni
	dispersion	surface area	diameter
	(%) ^b	(m²/g _{Ni}) ^b	(nm) ^b
25.7	10.8	71.8	9.4
26.2	30.8	205.2	3.3
25.6	25.2	167.9	4.1
26.4	24.1	160.6	4.3
25.3	ЭСГ	177 0	2.0
	20.5	1/7.3	5.8
	Ni content (%) ^a 25.7 26.2 25.6 26.4 25.3	Ni content Ni dispersion (%) ^a (%) ^b 25.7 10.8 26.2 30.8 25.6 25.2 26.4 24.1 25.3 26.5	Ni Metallic Ni content dispersion surface area (%) ^a (%) ^b (m ² /g _{Ni}) ^b 25.7 10.8 71.8 26.2 30.8 205.2 25.6 25.2 167.9 26.4 24.1 160.6 25.3 26.5 177.3

Table S1 The Ni dispersion and other properties of Ni-based catalysts

^a: determined by ICP;

^b: calculated from CO pulse chemisorption.

CO pulse chemisorption: 30 mg catalyst sample was loaded in U type quartz tube and installed in Micromeritics AutoChem II 2920 instrument. The sample was pretreated at 300 °C by a He gas for 1 h. After the sample was cooled to room temperature, the CO pulse chemisorption was tested until the pulse peak become stable (carrier gas: He; Pulse gas: CO).

Catalyst	Furfural	FOL	THFOL
Catalyst	conversion (%)	selectivity (%)	selectivity (%)
Ni-LN650	98.8	12.7	87.2
Impregnated Ni/La ₂ O ₃	84.3	25.4	74.5
Raney Ni			
(particle size \leq 50 μ m,	95.8	18.6	81.3
dispersed in water)			

Table S2 The comparison of Ni-LN650 with impregnated Ni/La2O3 and Raney Ni catalyst in aqueous-phase hydrogenation of furfural

Reaction conditions: Ni-LN650 and Ni/La₂O₃ 30 mg, Raney Ni 1 mL; 120 °C and 1 MPa H₂ for 3 h, 1mmol furfural, 10 mL DI water.