The use of a semi-flexible bipyrimidyl ligand for the construction of

azide-based coordination polymers: structural diversities and

magnetic properties

Zu-Zhen Zhang,^a Gene-Hsiang Lee^b and Chen-I Yang*^a

^a Department of Chemistry, Tunghai University, Taichung 407, Taiwan

^b Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan

	Index	Page
Fig. S1.	Thermogravimetric (TG) analysis diagram of compound 1–4.	S3
Fig. S2.	Simulated PXRD pattern (red) and experimental PXRD pattern of compound 1–4.	S4
Fig. S3.	Perspective view of interlayer Ni…Ni distances in 4 (dashed line).	S6
Fig. S4.	Plot of χ_{M}^{-1} (\circ) vs. temperature for a microcrystalline sample of compound 1 . The solid line represents the best fit χ_{M}^{-1} above 50 K with a Curie–Weiss law.	S7
Fig. S5.	In phase (χ') and out-off phase (χ'') plots of ac magnetic susceptibilities in a zero applied dc field and in an ac field of 3.5 G at the indicated frequencies for a microcrystalline sample of compound 1 .	S8
Fig. S6.	Plot of χ_{M}^{-1} (\circ) vs. temperature for a microcrystalline sample of compound 2 . The solid line represents the best fit χ_{M}^{-1} above 50 K with a Curie–Weiss law.	S9
Fig. S7.	ZFC/FC magnetizations of compound 2 at the field of 20 Oe.	S10
Fig. S8.	χ' and χ'' plots of ac magnetic susceptibilities in a zero applied dc field and in an ac field of 3.5 G at the indicated frequencies for a microcrystalline sample of compound 2 .	S11
Fig. S9 .	A blow-up of the hysteresis loop of compound 2 at the 2.0 K.	S12
Fig. S10.	FC magnetization curves measured under the indicated external fields for compound 2 .	S13
Fig. S11.	Field dependence of magnetizations for compound 2 measured at the indicated temperatures.	S14
Fig. S12.	dM/dH vs. <i>H</i> plots for the virgin magnetization of compound 2 .	S15

Fig. S13.	Magnetic phase (T, H) diagram for 2 , the data from location of the maximum of susceptibility from χ_M vs <i>T</i> data (open black square), location of the maximum of susceptibility from dM/dH vs <i>H</i> data (open red cycle), and location of the maximum of χ_M' from ac data (open blue triangle); the solid line is a guide.	S16
Fig. S14.	Plot of χ_{M}^{-1} (\circ) vs. temperature for a microcrystalline sample of compound 3 . The solid line represents the best fit χ_{M}^{-1} above 50 K with a Curie–Weiss law.	S17
Fig. S15.	Field dependence of the magnetization of 3 at 2.0 K.	S18
Fig. S16.	Plot of $\chi_{M}^{-1}(\circ)$ vs. temperature for 4. The solid line represents the best fit χ_{M}^{-1} above 170 K with a Curie–Weiss law.	S19
Fig. S17.	ZFC/FC magnetizations of compound 4 at the field of 50 Oe.	S20
Fig. S18.	χ' and χ'' plots of ac magnetic susceptibilities in a zero applied dc field and in an ac field of 3.5 G at the indicated frequencies for a microcrystalline sample of compound 4.	S21
Fig. S19.	A blow-up of the hysteresis loop of compound 4.	S22
Fig. S20.	FC magnetization curves measured under the indicated external fields for compound 4 .	S23
Fig. S21.	Field dependence of magnetizations for 4 measured at the indicated temperatures.	S24
Fig. S22.	dM/dH vs. H plots for the virgin magnetization of compound 4.	S25
Fig. S23.	Magnetic phase (T, H) diagram for 4, the data from location of the maximum of susceptibility from χ_M vs T data (open blue cycle), location of the maximum of susceptibility from dM/dH vs H data (open red square), and location of the maximum of χ_M' from ac data (open green triangle); the solid line is a guide.	S26

Fig. S1. Thermogravimetric (TG) analysis diagram of compound 1–4.

Fig. S2. Simulated PXRD pattern (red) and experimental PXRD pattern of compound 1–4.

Fig. S3. Perspective view of interlayer Ni…Ni distances in 4 (dashed line).

Fig. S4. Plot of $\chi_{M}^{-1}(\circ)$ vs. temperature for a microcrystalline sample of compound **1**. The solid line represents the best fit χ_{M}^{-1} above 50 K with a Curie–Weiss law.

Fig. S5. In phase (χ') and out-off phase (χ'') polts of ac magnetic susceptibilities in a zero applied dc field and in an ac field of 3.5 G at the indicated frequencies for a microcrystalline sample of compound 1.

Fig. S6. Plot of χ_{M}^{-1} (\circ) vs. temperature for a microcrystalline sample of compound **2**. The solid line represents the best fit χ_{M}^{-1} above 50 K with a Curie–Weiss law.

Fig. S7. ZFC/FC magnetizations of compound 2 at the field of 20 Oe.

Fig. S8. χ' and χ'' plots of ac magnetic susceptibilities in a zero applied dc field and in an ac field of 3.5 G at the indicated frequencies for a microcrystalline sample of compound **2**.

Fig. S9. A blow-up of the hysteresis loop of compound 2 at the 2.0 K.

Fig. S10. FC magnetization curves measured under the indicated external fields for compound 2.

Fig. S11. Field dependence of magnetizations for compound 2 measured at the indicated temperatures.

Fig. S12. dM/dH vs. H plots for the virgin magnetization of compound 2.

Fig. S13. Magnetic phase (*T*, *H*) diagram for **2**, the data from location of the maximum of susceptibility from χ_M vs *T* data (open black square), location of the maximum of susceptibility from dM/dH vs *H* data (open red cycle), and location of the maximum of χ_M' from ac data (open blue triangle); the solid line is a guide.

Fig. S14. Plot of $\chi_{M}^{-1}(\circ)$ vs. temperature for a microcrystalline sample of compound **3**. The solid line represents the best fit χ_{M}^{-1} above 50 K with a Curie–Weiss law.

Fig. S15. Field dependence of the magnetization of 3 at 2.0 K.

Fig. S16. Plot of χ_{M}^{-1} (\circ) vs. temperature for **4**. The solid line represents the best fit χ_{M}^{-1} above 170 K with a Curie–Weiss law.

Fig. S17. ZFC/FC magnetizations of compound 4 at the field of 50 Oe.

Fig. S18. χ' and χ'' plots of ac magnetic susceptibilities in a zero applied dc field and in an ac field of 3.5 G at the indicated frequencies for a microcrystalline sample of compound 4.

Fig. S19. A blow-up of the hysteresis loop of compound 4.

Fig. S20. FC magnetization curves measured under the indicated external fields for compound 4.

Fig. S21. Field dependence of magnetizations for 4 measured at the indicated temperatures.

Fig. S22. dM/dH vs. *H* plots for the virgin magnetization of compound **4**.

Fig. S23. Magnetic phase (*T*, *H*) diagram for **4**, the data from location of the maximum of susceptibility from χ_M vs *T* data (open blue cycle), location of the maximum of susceptibility from dM/dH vs *H* data (open red square), and location of the maximum of χ_M' from ac data (open green triangle); the solid line is a guide.