Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Table of contents:

General experimental techniques	
Synthesis and characterization	3
Crystallographic details	5
NMR spectra	6
IR spectra	14
References	17

General experimental techniques

All manipulations were performed either under solvent vapour pressure or dry argon using glovebox and *Schlenk* techniques. Dichloromethane was dried by refluxing over CaH₂ and CD₂Cl₂ was dried over CaH₂ and vacuum transferred directly into the *J. Young* NMR tubes. BeCl₂,^[1] 1,2-disila[12]crown-4,^[2] 1,2,4,5-tetrasila[12]crown-4,^[3] 1,2,7,8-tetrasila[12]crown-4,^[2] 1,2-disila[9]crown-3,^[4] 1,2-disila[15]crown-5,^[2] 1,2-disila-benzo[18]crown-6^[5] and 2,2'-[1,2-phenylenebis(oxy)]diethanol^[6] were prepared according to literature procedures. Due to the expected extreme toxicity of the beryllium compounds no elemental analysis or mass spectrometry could be performed of these.

NMR spectroscopy

¹H, ⁹Be, ¹³C and ²⁹Si NMR spectra were recorded on *Bruker* Avance III HD 300 and Avance III 500 NMR spectrometers. ¹H NMR (300 / 500 MHz) and ¹³C NMR (76 / 126 MHz) chemical shifts are given relative to the solvent signal CD₂Cl₂ (5.32 and 53.8 ppm) while ⁹Be (42 / 70 MHz) used 0.43 [M] BeSO₄ in D₂O and ²⁹Si (60 / 99 MHz) used neat SiMe₄ as an external standard. NMR spectra were processed with the MestReNova software.^[7]

IR spectroscopy

IR spectra were recorded on a *Bruker* alpha FT-IR spectrometer equipped with a diamond ATR unit in an argon filled glovebox. Processing of the spectra was performed with the OPUS software package^[8] and OriginPro 2017.^[9]

Single crystal X-ray diffraction

Single crystals were selected under exclusion of air in perfluorinated polyether (Fomblin YR 1800, *Solvay Solexis*) and mounted using the *MiTeGen* MicroLoop system. X-ray diffraction data were collected using the monochromated Mo- K_{α} radiation of a *Stoe* IPDS2 diffractometer equipped with an Image Plate detector or the monochromated Mo- K_{α} radiation of a *Bruker* D8 Quest diffractometer equipped with a microfocus source and a *CMOS* Photon 100 detector. The diffraction data were reduced with the X-Area software.^[10] The structures were solved using Direct Methods (SHELXS-2013/1 & SHELXT-2015) and refined against F^2 (SHELXL-2016/4) using the ShelXle (**4**) and OLEX2 (**5**) software packages.^[11] All atoms were located by Difference Fourier synthesis and non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined isotropically.

Mass spectrometry

Mass spectrometry was performed on a *Thermo Fischer Scientific* LTQ-FT Ultra using a electrospray ionization (ESI) source.

Synthesis and characterization

1,2-disila-benzo[12]crown-4 (3):

1.00 g of 2,2'-[1,2-Phenylenebis(oxy)]diethanol (6.02 mmol, 1.00 eq) and 1.67 mL of NEt₃ (12.04 mmol, 2.0 eq) were dissolved in 50 ml of THF. Subsequently, 1.14 ml of Si₂Me₄Cl₂ (6.02 mmol, 1.0 eq) dissolved in 50 ml of THF was added over a period of 60 min. The resulting white suspension was then stirred overnight and freed of the solvent in vacuo. The residue was extracted with 50 ml of *n*-pentane followed by filtration. Removing the solvent under reduced pressure yielded the crown ether as a colourless oil (1.32 g, 70%). For purification, the crown ether was sublimated by slowly raising the temperature to 90 °C under fine vacuum (1·10⁻³ mbar) and was then obtained as a colourless wax. ¹H NMR: (300 MHz, CD₂Cl₂) δ = 0.24 (s, 12H, SiCH₃), 3.96-3.99 (m, 4H, CH₂), 4.04-4.08 (m, 4H, CH₂), 6.92 (s, 4H, CH₁₀) npm ¹³C(¹H) NMR: (126 MHz, CD₂Cl₁₀) δ = 0.8 (s, SiCH₂) 63 6 (s, CH₂), 72 5 (s, CH₂), 116.8

(s, 4H, CH_{AR}) ppm. ¹³C{¹H} NMR: (126 MHz, CD₂Cl₂) δ = 0.8 (s, SiCH₃), 63.6 (s, CH₂), 72.5 (s, CH₂), 116.8 (s, C_{AR}), 122.5 (s, C_{AR}), 150.5 (s, C_{ARq}). ²⁹Si{¹H} NMR (60 MHz, CD₂Cl₂) δ = 11.5 ppm (s, SiCH₃). HR-MS(ESI⁺): m/z calcd. for [C₁₄H₂₄O₄Si₂+H]⁺: 313.1291; found: 313.1285 (100). Anal. calcd. for C₁₄H₂₄O₄Si₂: C, 53.81; H 7.74. Found: C, 53.67; H, 7.76.

In situ NMR monitoring:

5.0 mg (0.06 mmol) $BeCl_2$ and 0.06 mmol of the ligand were placed in a *J. Young* NMR tube and 0.5 ml CD_2Cl_2 were vacuum transferred into the tube. NMR spectra were recorded in regular time intervals (see NMR spectra below).

Crystallisation of compounds 4 and 5:

 $BeCl_2$ (5.0 mg, 0.06 mmol) and 0.06 mmol of ligand **2a** or **3** were placed in a *J. Young* NMR tube and 0.5 ml CD_2Cl_2 were vacuum transferred into the tube. After standing at ambient temperature for two months crystals of compounds **4** suitable for single crystal X-ray diffraction analysis grew on the wall of the vessel, while layering of the reaction solution with benzene led to the formation of crystals of compound **5**.

Synthesis of samples for IR spectroscopy:

8.0 mg (0.10 mmol) $BeCl_2$ and 0.10 mmol of ligand **2a**, **2c** or **3** respectively were weighed into a *Schlenk* tube and 5.0 ml dichloromethane was added *via* cannula and the reaction mixture was stirred for two hours at ambient temperature. Afterwards the solvent was removed *in vacuo* and the received colourless oils were analysed via ATR FT-IR spectroscopy.

Spectroscopic data:

[Be(O(C₂H₄O)(SiMe₂SiMe₂O)(C₂H₄O)] (8b): ⁹Be NMR (70 MHz, CD₂Cl₂) δ = 3.4 ($\omega_{1/2}$ = 69.0 Hz). Due to extremely broad signals and the presence of compounds **10b** and **2b** no signal assignment could be performed in the ¹H, ²⁹Si and ¹³C NMR spectra.

[Be(O(C₂H₄O)(C₆H₄O)(C₂H₄O))] (8Ph): ⁹Be NMR (42 MHz, CD₂Cl₂) δ = 3.1 ($\omega_{1/2}$ = 59.1 Hz). Due to extremely broad signals and the presence of compounds **10Ph** and **3** no signal assignment could be performed in the ¹H and ¹³C NMR spectra.

[BeCl(O(C₂H₄O)₃Me)] (9): ¹H NMR (300 MHz, CD₂Cl₂) δ = 3.27 – 3.70 (m, 4H, CH₂), 3.87 (bs, $\omega_{1/2}$ = 25.6 Hz, 7H, CH₂, CH₃), 4.14 (bs, $\omega_{1/2}$ = 15.7 Hz, 4H, CH₂). ⁹Be NMR (42 MHz, CD₂Cl₂) δ = 3.6 ($\omega_{1/2}$ = 30.1 Hz). ¹³C NMR (126 MHz, CD₂Cl₂) δ = 59.4 (bs, $\omega_{1/2}$ = 61.1 Hz, CH₃), 63.8 (bs, $\omega_{1/2}$ = 37.9 Hz, CH₂), 70.4 (bs, $\omega_{1/2}$ = 21.7 Hz, CH₂), 71.1 (bs, $\omega_{1/2}$ = 53.6 Hz, CH₂), 72.1 (bs, $\omega_{1/2}$ = 81.8 Hz, CH₂).

[BeCl(O(C₂H₄O)₃SiMe₂SiMe₂Cl)] (10a): ¹H NMR (500 MHz, CD₂Cl₂) δ = 0.31 (s, 6H, OSi*Me*₂SiMe₂Cl), 0.51 (s, 6H, OSiMe₂Si*Me*₂Cl), 3.49 – 3.53 (m, 4H, CH₂), 3.58 (s, 4H, CH₂), 3.71 – 3.76 (m, 4H, CH₂). ⁹Be NMR (70 MHz, CD₂Cl₂) δ = 3.4 ($\omega_{1/2}$ = 60.5 Hz). ¹³C NMR (126 MHz, CD₂Cl₂) δ –1.0 (OSi*Me*₂SiMe₂Cl), 2.7 (OSiMe₂Si*Me*₂Cl), 63.9 (CH₂), 71.1 (CH₂), 73.0 (CH₂). ²⁹Si NMR (99 MHz, CD₂Cl₂) δ = 11.5 (s, OSiMe₂SiMe₂Cl), 18.4 (s, OSiMe₂SiMe₂Cl).

[BeCl(O(C₂H₄O)(SiMe₂SiMe₂O)(C₂H₄O)SiMe₂SiMe₂Cl)] (10b): ¹H NMR (500 MHz, CD₂Cl₂) δ = 0.26 (s, 12H, OSiMe₂SiMe₂O), 0.31 (s, 6H, OSiMe₂SiMe₂Cl), 0.51 (s, 6H, OSiMe₂SiMe₂Cl), 3.67 (s, 2H, CH₂), 3.82 (s, 6H, CH₂). ⁹Be NMR (70 MHz, CD₂Cl₂) δ = 2.5 ($\omega_{1/2}$ = 53.2 Hz). ¹³C NMR (126 MHz, CD₂Cl₂) δ = -1.0 (OSiMe₂SiMe₂Cl), -0.1 (OSiMe₂SiMe₂O), 2.8 (OSiMe₂SiMe₂Cl), 65.7 (CH₂), 67.0 (CH₂). ²⁹Si NMR (99 MHz, CD₂Cl₂) δ = 11.6 (s, OSiMe₂SiMe₂O), 11.8 (s, OSiMe₂SiMe₂Cl), 18.6 (s, OSiMe₂SiMe₂Cl).

[BeCl(O(C₂H₄O)(C₆H₄O)SiMe₂SiMe₂Cl)] (10Ph): ¹H NMR (500 MHz, CD₂Cl₂) δ = 0.36 (s, 6H, OSi*Me*₂SiMe₂Cl), 0.52 (s, 6H, OSiMe₂Si*Me*₂Cl), 3.96 – 4.00 (m, 4H, CH₂), 4.05 – 4.08 (m, 4H, CH₂), 6.86 – 6.98 (m, 2H, H_{Ar}), 7.18 – 7.26 (m, 2H, H_{Ar}). ⁹Be NMR (42 MHz, CD₂Cl₂) δ = 3.1 ($\omega_{1/2}$ = 59.1 Hz). ¹³C NMR (126 MHz, CD₂Cl₂) δ = -1.0 (OSi*Me*₂SiMe₂Cl), 2.7 (OSiMe₂Si*Me*₂Cl), 63.2 (CH₂), 70.7 (CH₂), 114.6 (C_{Ar} H), 121.8 (C_{Ar} H), 149.3 (C_{Ar}). ²⁹Si NMR (99 MHz, CD₂Cl₂) δ = 12.2 (s, OSiMe₂SiMe₂Cl), 18.3 (s, OSiMe₂SiMe₂Cl).

[BeCl₂(1,2-disila[12]crown-4)] (11a): ¹H NMR (500 MHz, CD₂Cl₂) δ = 0.24 (s, 12H, Si*Me*₂), 3.60 (s, 4H, C*H*₂), 3.69 – 3.72 (m, 4H, C*H*₂). ¹³C NMR (126 MHz, CD₂Cl₂) δ –0.1 (Si*Me*₂), 0.0 (Si*Me*₂), 63.6 (CH₂), 71.2 (CH₂), 73.1 (CH₂). ²⁹Si NMR (99 MHz, CD₂Cl₂) δ = 11.4 (*Si*Me₂). FT-IR (cm⁻¹): 2951 (m), 2884 (m), 1458 (w), 1395 (w), 1350 (w), 1293 (w), 1248 (m, Si-Me), 1136 (m, Si-O/C-O), 1083 (s, Si-O/C-O), 1046 (s, Si-O/C-O), 930 (s), 822 (m), 789 (s, Si-Me), 767 (s, Si-Me), 728 (s), 687 (w), 671 (w), 628 (s), 522 (m), 484 (s, Be-Cl), 404 (m).

[BeCl₂(1,2,4,5-tetrasila[12]crown-4)] (11c): ¹H NMR (500 MHz, CD₂Cl₂) δ = 0.19 (s, 6H, Si*Me*₂), 0.20 (s, 6H, Si*Me*₂), 3.58 – 3.64 (m, 4H, C*H*₂), 3.74 – 3.77 (m, 4H, C*H*₂). ¹³C NMR (126 MHz, CD₂Cl₂) δ = 0.41 (Si*Me*₂OSi*Me*₂), 2.5 (Si*Me*₂OCH₂), 63.2 (CH₂OSiMe₂), 73.1 (CH₂OCH₂). ²⁹Si NMR (99 MHz, CD₂Cl₂) δ = 3.8 (s, *SiOSi*), 10.7 (*SiOC*). FT-IR (cm⁻¹): 2949 (m), 2882 (w), 1593 (w), 1501 (m), 1454 (m), 1399 (w), 1248 (s, Si-Me), 1218 (m), 1126 (m, Si-O/C-O), 1091 (s, Si-O/C-O), 1042 (s, Si-O/C-O), 926 (s), 822 (m), 791 (m), 763 (s, Si-Me), 742 (s, Si-Me), 683 (m), 634 (s), 598 (m), 481 (s, Be-Cl), 406 (m).

[BeCl₂(1,2-disila-benzo[12]crown-4)] (11Ph): FT-IR (cm⁻¹): 2945 (m), 2880 (m), 1593 (w), 1501 (m), 1452 (m), 1399 (w), 1356 (w), 1328 (w), 1289 (w), 1250 (s, Si-Me), 1216 (m), 1126 (m, Si-O/C-O), 1089 (s, Si-O/C-O), 1046 (s, Si-O/C-O), 938 (s), 830 (s), 787 (s), 767 (s, Si-Me), 738 (s, Si-Me), 632 (m), 528 (m, Be-Cl), 483 (m).

Crystallographic details

	$4 \cdot CH_2CI_2$	5 · 2 C ₆ H ₆
empirical formula	$C_{25}H_{50}Be_6Cl_6O_{16}$	$C_{48}H_{52}Be_6CI_4O_{14}$
color and appearance	colourless block	colourless block
molecular mass / g mol ⁻¹	873.41	1048.75
cryst. syst.	monoclinic	triclinic
space group type (No.)	<i>C</i> 2/ <i>c</i> (15)	P1 (2)
a / Å	19.481(4)	9.8872(5)
<i>b</i> / Å	9.549(2)	12.0013(6)
<i>c</i> / Å	21.762(4)	12.2122(6)
α / °	90	108.235(2)
6 / °	106.72(3)	103.883(2)
γ/°	90	106.623(2)
volume / ų	3877.2(15)	1229.35(11)
Ζ	4	1
λ / Å	0.71073 (Mo-K _α)	0.71073 (Mo-K _α)
Т/К	100(2)	100(1)
μ / mm ⁻¹	0.509	0.307
Θ_{max}	26.371	24.91
hkl _{max}	-24 ≤ <i>h</i> ≤ 24	$-11 \le h \le 11$
	$-11 \leq k \leq 11$	$-14 \le k \le 14$
	<i>−</i> 19 ≤ <i>l</i> ≤ 27	$-14 \le l \le 14$
crystal size / mm ³	$0.11 \cdot 0.10 \cdot 0.09$	0.26 · 0.16 · 0.09
$R_{\rm int}, R_{\sigma}$	0.081, 0.057	0.022, 0.039
$R(F)$ ($I \ge 2\sigma(I)$, all data)	0.053, 0.064	0.040, 0.049
$wR(F^2)$ ($I \ge 2\sigma(I)$, all data)	0.140, 0.148	0.096, 0.100
S (all data)	1.069	1.046
data, parameter, restraints	3895, 226, 0	4297, 325, 0
Δho_{max} , Δho_{min} / e Å ⁻³	0.693 / -0.488	0.552 / -0.310

Table S1: Crystallographic details of compounds 4 & 5

NMR spectra

Figure S1: ²⁹Si NMR spectra of the reaction of BeCl₂ with ligand **2a** after different reaction times in CD₂Cl₂. The signal marked with an asterisk presumably originates from compound **11a**.

Figure S2: ¹³C NMR spectra of the reaction of BeCl₂ with ligand **2a** after different reaction times in CD₂Cl₂. The signal marked with an asterisk presumably originates from compound **11a**.

Figure S3: ¹H NMR spectra of the reaction of BeCl₂ with ligand **2a** after different reaction times in CD₂Cl₂. The signal marked with an asterisk presumably originates from compound **11a**.

Figure S4: ²⁹Si NMR spectra of the reaction of $BeCl_2$ with ligand **3** after different reaction times in CD_2Cl_2 .

Figure S5: ^{13}C NMR spectra of the reaction of BeCl_2 with ligand ${\bf 3}$ after different reaction times in CD_2Cl_2.

Figure S6: ¹H NMR spectra of the reaction of $BeCl_2$ with ligand **3** after different reaction times in CD_2Cl_2 .

W

 CD_2Cl_2 .

a)

Figure S9: ¹³C NMR spectra of the reaction of $BeCl_2$ with a) ligand **6** and b) ligand **7** in CD_2Cl_2 .

Figure S10: ¹H NMR spectra of the reaction of BeCl₂ with a) ligand **6** and b) ligand **7** in CD₂Cl₂.

10

Figure S11: ⁹Be NMR spectra of BeCl₂ with [12]crown-4 (a), ligands **2a** (b), **3** (c), **6** (d) or **7** (e) in CD₂Cl₂ respectively.

Figure S12: ²⁹Si NMR spectra of the reaction of $BeCl_2$ with ligand **2b** after different reaction times in CD_2Cl_2 .

Figure S13: ⁹Be NMR spectra of the reaction of BeCl₂ with a) ligand **2a** and b) ligand **2b** in CD₂Cl₂.

Figure S15: ²⁹Si NMR spectra of the reaction of BeCl₂ with ligands a) **2a**, b) **3**, c) **2b** and d) **2c** in CD₂Cl₂. Free ligand is marked with an asterisk.

).0 19.5 19.0 18.5 18.0 17.5 17.0 16.5 16.0 15.5 15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 $\delta\,/\,ppm$

Figure S16: ²⁹Si NMR spectra of the reaction of $BeCl_2$ with ligand **15** after different reaction times in CD_2Cl_2 .

IR spectra

Figure S17: Detail of the FT-IR spectra of 1,2-disila[12]crown-4 (2a) before (red) and after reaction with BeCl₂ (black).

Figure S18: FT-IR spectra of 1,2-disila[12]crown-4 (2a) before (red) and after reaction with BeCl₂ (black).

Figure S19: Detail of the FT-IR spectra of 1,2,4,5-tetrasila[12]crown-4 (**2c**) before (red) and after reaction with BeCl₂ (black).

Figure S20: FT-IR spectra of 1,2,4,5-tetrasila[12]crown-4 (**2c**) before (red) and after reaction with BeCl₂ (black).

Figure S21: Detail of the FT-IR spectra of 1,2-disila-benzo[12]crown-4 (**3**) before (red) and after reaction with BeCl₂ (black).

Figure S22: FT-IR spectra of 1,2-disila-benzo[12]crown-4 (3) before (red) and after reaction with BeCl₂ (black).

References

- [1] M. Müller, F. Pielnhofer, M. R. Buchner, *Dalton Trans.* 2018, doi: 10.1039/C8DT01756E.
- [2] K. Reuter, M. R. Buchner, G. Thiele, C. von Hänisch, Inorg. Chem. 2016, 55, 4441.
- [3] K. Reuter, G. Thiele, T. Hafner, F. Uhlig, C. von Hänisch, *Chem. Commun.* 2016, *52*, 13265.
- [4] F. Dankert, J. Heine, J. R. C. von Hänisch, *CrystEngComm* **2018**, doi: 10.1039/C8CE01097H.
- [5] F. Dankert, K. Reuter, C. Donsbach, C. von Hänisch, *Dalton Trans.* **2017**, *46*, 8727.
- [6] M. A. Peshkova, N. V. Timofeeva, A. L. Grekovich, S. M. Korneev, K. N. Mikhelson, *Electroanalysis* **2010**, *22*, 2147–2156.
- [7] MestReNova, Mestrelab Research S.L., Santiago de Compostela, Spain **2011**.
- [8] OPUS, Bruker Optik GmbH, Ettlingen, Germany **2009**.
- [9] OriginPro 2017, OriginLab Corporation, Northampton, MA, USA **2017**.
- [10] a) *X-Area*, Stoe & Cie GmbH, Darmstadt, Germany, **2011**; b) *X-Shape*, Stoe & Cie GmbH, Darmstadt, Germany, **2009**; c) *X-Red32*, Stoe & Cie GmbH, Darmstadt, Germany, **2009**.
- [11] a) G. M. Sheldrick, SHELXS-2013/1, Göttingen, Germany, 2013; b) G. M. Sheldrick, Acta Crystallogr., Sect. A: Fundam. Crystallogr. 2015, 71, 3; c) G. M. Sheldrick, SHELXL-2016/4, Göttingen, Germany, 2016; d) C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281; e) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.