Electronic Supplementary Information

A nickel(II) complex under water-oxidation reaction: What is the true catalyst?

Hadi Feizi,^a Robabeh Bagheri,^b Zvonko Jagličić,^c Jitendra Pal Singh,^d Keun Hwa Chae,^d and Zhenlun Song^b and Mohammad Mahdi Najafpour, *^{a,e,f}

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

^bSurface Protection Research Group, Surface Department, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201, China

^cInstitute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

^dAdvanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea

^eCenter of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

^fResearch Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

*Corresponding author; Phone: (+98) 24 3315 3201; E-mail: mmnajafpour@iasbs.ac.ir

Experimental Section

Materials

All reagents and solvents were obtained from commercial sources and used without further purification. Nickel(II) phthalocyanine-tetrasulfonate tetrasodium salt (1) and fluorine tin oxide coated glass (FTO) were purchased from Sigma-Aldrich.

Characterization

SEM was carried out with an LEO 1430VP. The X-ray powder patterns were recorded with a Bruker D8 ADVANCE diffractometer (CuK_{α} radiation). Visible spectra were recorded by a mini spectrophotometer (Pooyesh Tadbir Karaneh (Phystec), Iran). AFM was measured by Dualscope/ Rasterscope C26, DME, Denmark. Ni L-edge NEXAFS was measured at 10D XAS KIST beamline Pohang Light source. Magnetization was measured between 2 K and 300 K in a constant magnetic field of 10 mT, and as a function of magnetic field at 300 K and 2 K using a Quantum Design MPMS-XI-5 SQUID magnetometer.

Experimental Details for X-ray absorptions

The extended edge X-ray absorption fine structure (EXAFS) measurements on HF-Ni and reference materials (NiO and Ni) were performed at the hard X-ray 1D XAS KIST-PAL beamline, Pohang accelerator laboratory, operating at 3.0 GeV with a maximum storage current of 320 mA. 1D XAS KIST-PAL beamline is a bending magnet X-ray Scattering (XRS) beamline which uses Si(111) double crystal monochromator to give a wide range of monochromatic energies (4-16 keV). To measure EXAFS spectra of these materials, higher harmonics were removed by detuning incident beam intensity to 60% of maximum intensity. The ionization chamber filled with He was used to record the intensity of the incident X-rays. The fluorescence EXAFS signal was measured by a passivated implanted planar silicon (PIPS) detector. Before the measurement, reference foil (Ni) is used for energy calibration. Under stationary conditions, extended X-ray absorption fine-structure (EXAFS) measurements were performed at the Ni *K*- edge in the step scanning mode.

The program Athena was used to identifying the beginning of the absorption edge (E_0) , fit pre- and post-edge backgrounds, and hence to obtain the normalized absorbance χ as a function of the modulus of the photoelectron wave vector k. The fitting was carried out using ARTEMIS in the k range 3–10.5 Å. The EXAFS data is Fourier transformed to R-space to investigate the atomic structure and relative bond-lengths with respective to absorbing atoms. The theoretical structure for reference oxides was generated using the ATOM. In the fitting, values of coordination number (N), bond length (Ri) and Debye-Waller (σ^2) factors are kept free. The parameter ε_{o} , which is a correction to edge energy, was free to vary in all fitting. The errors in the fit parameters of R_i and σ^2 were obtained from 90% of happiness factor as calculated in IFEFFIT.

4

Electrochemistry

Electrochemical experiments were performed using an EmStat³⁺ from PalmSens (Netherlands). Cyclic voltammetry studies were carried out with a conventional threeelectrode setup, in which FTO, or Hg|HgO, and a platinum foil served as working, the reference and the auxiliary electrodes, respectively. All potentials in this project were reported vs. Ag|AgCl|KCl_{sat}. The distance between two opposite sides of the FTO electrode was measured by a digital caliper MarCal 16ER model (Mahr, Germany). The temperature was measured by Laserliner 082 (Germany).

Figure S1 | CV for the FTO after 250 continuous CVs in the presence (red) and in the absence (black) of **1** (0.51 mM) in phosphate buffer (20.0 mL; 0.25 M) at pH = 11.0 and with scan rate 50 mV/s. These CVs were obtained in phosphate buffer (20.0 mL; 0.25 M) at pH = 11.0 and with scan rate 50 mV/s.

Figure S2 | UV-visible spectra. UV-visible spectra for NiOOH (blue), NiO (orange) and NiOOH (yellow) after a few hours (a). UV-visible spectra for FTO (red) and FTO-**1** (blue) (b).

Figure S3 | spectroelectrochemistry. Spectroelectrochemistry in the presence of $Ni(ClO_4)_2$ (saturated) in phosphate buffer (5.0 mL;0.25 M) at pH = 11 (amperometric condition: 1.6 V) after 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 113 minutes.

Figure S4 | The SEM images. SEM images of fresh FTO.

Liquid chromatography-electrospray ionization- mass (LC-ESI)

LC condition :

Column: Column temperature : Mobile phase : Eclipse XDB-C18(4.6 $_{x}$ 150 mm , 5 μ m) 25°C A= Water +0.1% acetic acid B= methanol

Gradient

Time(min	В%	Flo
e)		w
0	5	0.3
25	60	0.3
40	10	0.3
	0	

Flow rate:	0.3 ml/min
Injection volumes:	10 ^µ L
MS condition :	
Mode :	positive ESI using the Agilent G6410
	Triple Quadrapole Mass spectrometer
Nebulizer :	15 psi
Drying gas flow :	6 ml/min
V capillary :	4500V
Drying gas temperature:	300°C
Dwell time:	500msec
Fragmentor :	135 v

--- End Of Report ---

4987

397.1

LC condition :

Column: Column temperature : Mobile phase : Eclipse XDB-C18(4.6 $_{\rm X}$ 150 mm , 5µm)

25°C

A= Water +0.1% acetic acid B= methanol Gradient

Time(min	B%	Flo
e)		w
0	20	0.3
20	60	0.3
35	10	0.3
	0	
25	10	0.3
	0	

Flow rate:	0.3 ml/min
Injection volumes:	10 ^µ L
MS condition :	
Mode :	negative ESI using the Agilent G6410
	Triple Quadrapole Mass spectrometer
Nebulizer :	15 psi
Drying gas flow :	6 ml/min
V capillary :	4500V
Drying gas temperature:	300°C
Dwell time:	500msec
Fragmentor :	135 v

m/z	Abund.
177	41269
195	69024
199	45363
216.9	68550
233	66279
244	38171
472.8	41057
488.7	56869
608.8	44566
624.7	40556

Fragmentor Voltage 135

Ionization Mode Esi

Peak List Abund. m/z 26985 111.1 138456 113.1 155.1 130856 205.2 79390 249 175415 250.2 160614 291.2 114963 385.1 32258 520.9 49429 36334 1034

--- End Of Report ---