Electronic Supplementary Information (ESI)

Cu-NHC based phosphorescent binuclear Iridium(III)/Copper(I) complex with an unpredictable near-linear two-coordination mode

Chao Shi,^{*a b*} Manli Huang,^{*c*} Qiuxia Li,^{*a*} Guohua Xie,^{*c*} Chuluo Yang*^{*c*} and Aihua Yuan*^{*a b*}

Contents:

Synthesis	S2
X-ray crystal structure analysis	S3
Photophysical properties	S4
OLED Device characterization	S6
DFT calculation	S7
NMR spectra	S8
References	S10

Synthesis

Fig. S1. The synthetic routes for binuclear Iridium(III)/Copper(I) complexIr-Cu andCopper(I)/Copper(I)complexCu-Cu.

X-ray crystal structure analysis

Fig. S2. The dihedral angles comparisons for ligand L-1 in complex Ir-Cu, Ir-1 and Ir-Ir-1.

Complex	Ir-Cu		
chemical formula	C ₆₀ H ₅₉ CulrN ₈ F ₆ P		
formula weight	1292.86		
crystal size (mm)	0.18 ×0.21 × 0.23		
temperature (K)	291		
radiation	0.71073		
crystal system	Triclinic		
space group	P-1		
a(Å)	13.565(2)		
b(Å)	14.327(2)		
c(Å)	17.823(2)		
α(°)	70.405(3)		
β(°)	69.494(2)		
γ(°)	62.654(2)		
V(ų)	2817.7(7)		
Z	2		
ρ(_{calc}) (g/cm³)	1.524		

 Table S1. Crystallographic Data for Ir-Cu

F (000)	1300		
absorp.coeff. (mm ⁻¹)	2.831		
θ range (deg)	1.6 to 27.7		
refins collected	56406 (R _{int} = 0.040)		
indep. reflns	13006		
Refns obs.[$l > 2\sigma(l)$]	9742		
data/restr/paras	13006/0/701		
GOF	1.04		
R ₁ /wR ₂ [<i>l</i> >2σ(<i>l</i>)]	0.0549/0.0808		
R ₁ /wR ₂ (all data)	0.0838/0.0864		
larg peak and hole(e/Å ³)	2.31/–1.21		

Photophysical properties

Fig. S3. PL spectrum comparison for Ir-Cu and Cu-Cu at different temperatures.

Fig. S4. UV absortion and PL spectrum of **Ir-Cu**, **Ir-1** and **Ir-Ir** in CH₂Cl₂ solution at room temperatures.

complex	$\lambda_{abs}{}^{[a]}$			PL ^[a]	$oldsymbol{\phi}_{PL}{}^{[a]}$	T ^[a]	
complex		nm (log ε)		(nm)	(%)	(ns)	
	230(4.57),	252(4.65),	266(4.59),				
I. O.	294(4.44),	304(4.45),	338(4.37),	575	04	1740	4740
Ir-Cu	374(4.09),	400(3.86),	420(3.62),	575	21	1740	
	450(3.16),	500(2.63)					
	230(4.95),	251(5.03),	265(4.93),				
	290(4.79),	304(4.80),	339(4.71),	F7 4	20	540	540
I r- 1	374(4.41),	400(4.17),	420(3.90),	574	29	512	
	450(3.41),	500(2.84)					
	230(4.54),	251(4.61),	265(4.52),				
lr-Ir	290(4.39),	304(4.40),	339(4.32),	040.050	25	000	
	374(4.04),	400(3.82),	420(3.57),	619,659	35	806	000
	450(3.12),	500(2.60)					

Table S2. Photophysical data comparision for Ir-Cu, Ir-1 and Ir-Ir.

^[a] Measured in degassed CH_2Cl_2 at a concentration of 10⁻⁴ M, and log ϵ values are shown in parentheses at 298 K. The excitation wavelength is 370 nm.

OLED Device characterization

The prepatterned indium tin oxide (ITO) substrates were cleaned by ultrasonic acetone bath, followed by ethanol bath. Afterwards, the substrates were dried with N₂ and then loaded into a UV-Ozone chamber. After UV-Ozone treatment, The PEDOT: PSS layer was spin-coated on the ITO substrate as the hole-injecting layer, and then annealed at 120 °C for 10 min inside the N₂-filled glove-box. The emitter layer was also prepared by spin-coating directly on the hole-injecting layer, and then annealed at 50 °C for 10 min. The electron-transporting material and the cathode material were thermally evaporated onto the emitter layer in a vacuum chamber. Before taken out of the glove-box, the devices were encapsulated with UV-curable epoxy. The voltage-current-luminance characteristics and the EL spectra were simultaneously measured with PR735 SpectraScan Photometer and Keithley 2400 sourcemeter unit under ambient atmosphere at room temperature.

Fig. S5. Configuration of the OLEDs and chemical structures for the materials involved.

Table S3. EL performances of the device for Ir-Cu.

complex	V _{on} ^a	EQE _{max} /CE _{max} /PE _{max} ^b	λ _{ems} ^c CIE ^d	
	[V]	[%/cd A ⁻¹ /lm W ⁻¹]	[nm]	(x, y)
lr-Cu	8	2.6/7.4/1.2	590	(0.49, 0.48)
^a Voltage in the luminance of 10 cd/m ² . ^b Maximum external quantum efficiency (EQE _{max}),				
maximum current efficiency (CE _{max}), maximum power efficiency (PE _{max}). ^c Maximum				
emission wavelength of the EL spectra. d The Commission Internationale de l'Eclairage (CIE)				
coordinates.				

DFT calculation

DFT method was used to optimize the geometries all the complexes. The electronic transition energies and electron correlation effects were also calculated by (TD)-DFT method with the B3LYP functional (TD-B3LYP). The LANL2DZ basis set was used to treat with the iridium atom and copper, and the 6– 31G (d) basis set was used to treat with all other atoms. All calculations were carried out according to the Gaussian 09 program.¹

N-Cu-C:159.18 ^o	N1-Cu1-C1:156.86°	N2-Cu2-C2:154.84°
Cu-C: 2.058Å	Cu1-C1: 2.067Å	Cu2-C2: 2.067Å
Cu-N: 1.991Å	Cu1-N1: 1.997Å	Cu2-N2: 1.997Å

Fig. S6. Calculated optimized structure for Ir-Cu and Cu-Cu.

Table S4. Calculated energies and oscillator strengths for lowest-energy singlet (S1) and triplet (T1) transitions.

complexe s	states	E (eV)	Oscillator strength	main configurations (CI coeff)	Character
	S ₁	2.42	0.0001	HOMO→LUMO (0.65)	MLCT/LLCT
Ir-Cu	T ₁	2.32	0	HOMO-1→LUMO (0.57)	³ ILCT/ ³ MLCT/ ³ LLCT
				HOMO→LUMO (0.36)	
C C	S ₁	2.90	0	HOMO-2→LUMO (0.70)	ILCT/MLCT
Cu-Cu	T ₁	2.58	0	HOMO→LUMO (0.67)	³ ILCT/ ³ MLCT

NMR spectra

Fig. S7. ¹H NMR and ¹³C NMR spectra of Ir-Cu.

Fig. S8. ¹H NMR and ¹³C NMR spectra of Cu-Cu.

References

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V.Bakken, C. Adamo, J. Jaram illo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.