Supporting information for:

A Water-soluble BODIPY Based 'OFF/ON' Fluorescence Probe for the Detection of Cd²⁺ Ions with High Selectivity and Sensitivity

Apurba Maity,^a Utsav Ghosh,^a Dipanjan Giri,^a Devdeep Mukherjee,^b Tapas Kumar Maiti,^b Sanjib K. Patra^{*a}

^aDepartment of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, WB, INDIA, E-mail: <u>skpatra@chem.iitkgp.ac.in</u>; Tel: +913222283338

^bDepartment of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, WB, INDIA

1.	Synthesis and Charactarization	
	1.a Synthesis	S2-S3
	1.b NMR Spectra	S4-S12
	1.c FTIR spectra	S12-S15
	1.d Mass data	S15-S17
	1.e Preparation of BDP-Cd(II) complex	S17
2.	Photophysical and sensing studies	
	2.a Determination of quantum yield	S18
	2.b Absorption studies of LiBDP in presence of different metal ions	S18
	2.c Visual color changes	S19
	2.d Determination of association constant	S19
	2.e Calculation of limit of detection	S19-S20
	2.f pH dependency study	S21
	2.g Anion sensitivity study	S21
	2.h Reversibility studies of LiBDP-Cd ²⁺ by continuous variation of S^{2-} ion	
	concentration	S22
	2.i Preparation of LiBDP test paper	S22
	2.j Cell imaging study	S22
	2.k Computational details	\$23-\$25
3.	References	

1. Synthetic and Characterization

1.a) Synthesis

Scheme 1: synthesis of compound 1.

N,N-Bis (2-hydroxyethyl) aniline (1):¹ A Schlenk flask was charged with distilled aniline (2.55 g, 0.027 mol) and 2-chlorohydrine (5.51 g, 0.067 mol) and then refluxed while 10% aq NaOH (22 ml) was slowly added. The reaction mixture was then refluxed for overnight. The progess of the reaction was monitored by thin layer chromatography (TLC). After the reaction was completed, the mixture was cooled to room temperature. The reaction mixture was extracted by ethyl acetate and then the organic part was washed with brine. The collected organic layer was dried over anhydrous sodium sulphate, the solvent was removed by rotary evaporation. The crude product was purified by column chromatography using silica gel (60-120 mesh) & 50% ETOAC in hexane as eluent to afford pure compound **1** in yellow solid (4.01 gm, yield 82%). ¹H NMR (400MHz, CDCl₃): δ 7.21-7.25 (m, 2H, Ph), 6.69-6.76 (m, 3H, Ph), 3.84 (t, J = 4Hz, 4H, -NCH₂), 3.57 (t, J = 4Hz, 4H, -OCH₂). ¹³C{¹H} NMR (100MHz, CDCl₃): δ 148.0, 129.5, 117.1, 112.8 (Ph), 60.9 (-NCH₂), 55.6 (-OCH₂). FTIR (KBr, cm⁻¹): 3326 (vo_H, stretching). MALDI-TOF MS: (m/z) calcd for C₁₀H₁₆NO₂ [M+H]⁺, 182.243; found, 182.553.

Diethyl 2,2'-(2,2'-(phenylazanediyl)bis(ethane-2,1-diyl)bis(oxy))diacetate (2):² A 250 ml Schlenk flask was charged with 2 g (11.03 mmol) of N,N-Bis (2-hydroxyethyl) aniline under argon atmosphere. It was kept on an ice bath and 0.97 g (24.26 mmol) NaH (60 % dispersion in mineral oil) was added to it followed by addition of 50 ml THF. Lastly, 2.43 ml (22.1 mmol) of ethyl bromoacetate was added. The resulting reaction mixture was refluxed for 18 hrs at 60°C. After cooling down to room temperature, filtration was done to remove the solid residue. The solvent was removed under reduced pressure and the residue was extracted with DCM and dried over Na₂SO₄ and concentrated in vacuo. The crude product obtained was purified by silica gel chromatography with 35% EtOAc in

hexane as eluent to give a yellow liquid (2.9 g) in 75% yield. ¹H NMR (400MHz, CDCl₃): δ 1.27 (t, J = 8Hz, 6H), 3.64-3.72 (m, 4H), 4.07 (s, 4H), 4.20 (q, J = 8Hz, 4H), 6.66-6.73 (m, 3H), 7.19-7.22 (m, 2H). ¹³C{¹H} NMR (100MHz, CDCl₃): δ 14.3, 51.2, 60.1, 68.8, 69.1, 112.1, 116.6, 129.5, 147.7, 170.5. FTIR (KBr, cm⁻¹): 1731 (v_{C=0, stretching}, ester). ESI-MS (m/z): calcd for C₁₈H₂₈NO₆ [M+H]⁺, 354.19; found, 354.20.

Scheme 2: synthetic route for 2,4-dimethylpyrrole.

Diethyl 3,5-dimethyl-1H-pyrrole-2,4-dicarboxylate:³ An aqueous solution of sodium nitrite (5.4 g, 78.4 mmol) in water (10 mL) was added to a mixture of ethyl acetoacetic ester (20.4 gm, 20 mL, 156.8 mmol) and acetic acid (40 mL) over 30 min under ice cool condition to keep the temperature below 10 °C. The yellowish clear solution was formed which was allowed to stir for another 2.5 h at 10°C to complete the reaction. Then zinc powder (9.60 g, 156.8 mmol) was added to this mixture portion wise while the reaction mixture was kept below 25°C. Next the reaction mixture was heated to 45–50°C for 10 min and then continued to 95 °C for another 1 h. After cooling down to room temperature yellowish precipitate was formed which was filtered off and washed with ice water (100 mL) to remove the AcOH. The yellow crude solid was recrystallized from ethanol to afford the pure compound as pale yellow crystalline powder (15.4 gm, 41%). ¹H NMR (400 MHz CDCl₃) δ : (ppm): 8.90 (br s, 1H, pyrrole N-H), 4.35-4.26 (m, 4H, ester O-CH₂), 2,56 (s, 3H, pyrrole-CH₃), 2.51 (s, 3H, pyrrole-CH₃), 1.38-1.34(m, 6H, ester CH₃).

2,4-Dimethyl-1H-pyrrole:⁴ In a 250ml schlenk flask purged with argon, compound **1** (2.0g, 8.35 mmol), KOH (2.34g, 41.8 mmol) were charged and heated to reflux in ethylene glycol (15 mL) for 4 hours at 160 °C. After cooling to room temperature, the reaction mixture was extracted with CHCl₃, washed with brine solution and dried over Na₂SO₄. The solvent was removed by rotary evaporation to furnish the compound as dark brown oil (0.73 gm, 92%) which was used without further purification. ¹H NMR (400 MHz CDCl₃) δ (ppm): 7.62 (br s, 1H, pyrrole N-H), 6.41 (s, 1H, pyrrole H), 5.75 (s, 1H, pyrrole H), 2.24 (s, 3H, pyrrole-CH₃), 2.08 (s, 3H, pyrrole-CH₃).

Fig S1: ¹H NMR (400 MHz, CDCl₃) spectrum of 1.

Fig S2: ¹³C{¹H}NMR (100 MHz, CDCl₃) spectrum of 1

Fig S3: DEPT-135 NMR (100 MHz, CDCl₃) spectrum of 1

Fig S4: ¹H NMR (400 MHz, CDCl₃) spectrum of 2.

Fig S6: DEPT-135 NMR (100 MHz, CDCl₃) spectrum of 2.

Fig S8: ¹³C{¹H}NMR (100 MHz, CDCl₃) spectrum of **3**.

Fig S10: ¹H NMR (400 MHz, CDCl₃) spectrum of 4.

Fig S12: DEPT-135 NMR (100 MHz, CDCl₃) spectrum of 4.

-128 -129 -130 -131 -132 -133 -134 -135 -136 -137 -138 -139 -140 -141 -142 -143 -146 -146 -147 -148 -149 -150 -151 -152 -153 -154 -155 -156 -157 -158 -159 -160 f1 (ppm)

Fig S13: $^{19}\mathrm{F}\{^{1}\mathrm{H}\}$ NMR (376 MHz, CDCl₃) of 4.

Fig S14: 1 H NMR (600 MHz, D₂O) of LiBDP.

Fig S16: Dept-135 NMR (376 MHz, D₂O) of LiBDP.

Fig S17: ¹⁹F{¹H} NMR (376 MHz, D₂O) of **LiBDP**.

1c. FTIR Spectra

Figure S18. FTIR spectrum of 2.

4000 3500 3000 2500 2000 1500 1000 500 cm⁻¹

Figure S20. FTIR spectrum of 4.

Figure S22. FTIR spectrum of BDP-Cd(II) complex.

Figure S23. FTIR spectrum of the filtrate containing LiNO₃.

1d. Mass Data

Figure S24. LCMS-HRMS (ESI⁺) data of 3.

Figure S25. HRMS data of 4 (Inset: Experimental and simulated isotopic distribution at the molecular ion peak).

Figure S26. HRMS data of **LiBDP** (Inset: Experimental and simulated isotopic distribution at the molecular ion peak).

SKPAM4557_R3 191 (1.924) Cn (Cen,2, 50.00, Ht); Cm (191:237) 687.2521

The probe LiBDP (0.05 g, 0.1 mmol) and excess amount of Cd(NO₃)₂·3H₂O (0.09 g, 0.3 mmol) was added in distilled H₂O (6 mL) in a round bottom flask, and was allowed to stir at 28 °C for 3 hours. The reaction mixture was subjected to centrifuge for 25 minutes and the precipitate formed was filtered off. The residue was washed with distilled water for several times.

Then, both the residue and the filtrate were subjected to FTIR analysis. In the FTIR of the residue, there is no characteristic band for nitrate ions were (Figure S22) whereas, the filtrate showed characteristic bands at 1316 and 1633 cm⁻¹ for nitrate ions (Figure S23). Together with mass spectrometry (ESI⁺), IR and ¹H NMR analyses, formation of BDP-Cd(II) neutral complex was confirmed.

2. Photophysical and sensing studies

2a. Determination of Quantum yield:

All the UV–Vis absorption and fluorescence emission spectra were collected using a Shimadzu UV–Vis spectrophotometer (model UV 2450) and a Spex Fluorolog-3 spectrofluorimeter (model FL3–11) respectively. Throughout all the measurements, the concentration were maintained at (1×10^{-5}) M. Fluorescence quantum yields were measured with respect to a secondary standard fluorescein in 0.1 M NaOH ($\Phi = 0.79$) at 298 K.⁵ The sample and standard concentrations were adjusted to obtain an absorbance of 0.1 or less. The following equation was used to calculate the quantum yields:⁶

$$\frac{\Phi_S}{\Phi_R} = \frac{A_S}{A_R} \times \frac{(Abs)_R}{(Abs)_S} \times \frac{\eta_S^2}{\eta_R^2}$$

Here Φ represents the quantum yield, (Abs) represents the absorbance, A represents the area under the fluorescence curve, and η is the refractive index of H₂O. The subscript S and R denote the corresponding parameters for the sample and reference respectively.

2b. Absorption studies of LiBDP in presence of different metal ions

Fig S28: Absorption spectra of **LiBDP** (5μ M) upon addition of different metal ions (1 eqv.) in H₂O.

2c. Visual change

Fig S29: Visual fluorescence changes of **LiBDP** (3×10^{-4} M in H₂O) after addition of different metal ions (1 eqv. with respect to LiBDP) under UV light at 365 nm.

2d. Determination of association constant:

Determination of association constant of LiBDP for Cd²⁺

The association constant was determined by non linear least square fitting of fluorescence intensity versus concentration of Cd^{2+} according to the equation 1:⁷

$$I = I_0 + (I_{lim} - I_0)/2c_0 [c_0 + c_M + 1/K_s - [(c_0 + c_M + 1/K_s)^2 - 4c_0c_M]^{1/2}]$$

Here, I_0 is the fluorescence intensity of **LiBDP** in the absence of Cd^{2+} and I_{lim} is the maximum fluorescence intensity with Cd^{2+} . K_s is the association constant. c_M is the concentration of Cd^{2+} . I is the fluorescence intensity at any given concentration of Cd^{2+} with **LiBDP**.

2e. Calculation of the limit of detection:

The limit of detection (LOD) of the fluorescent probe **LiBDP** for Cd^{2+} was determined from the following equation:⁸

$$LOD=3\sigma/K$$

 σ is the standard deviation of the blank solution.

K is the slope of the calibration curve.

From the graph Fig-6 (in the main manuscript), we get slope = 1.72×10^8 , and σ value is 10.351. Thus using the formula we get the LOD for Cd²⁺ = 1.80×10^{-7} .

Reference	Solvent system	LOD (µM)	Association constant (M ⁻¹)
New J. Chem., 2017, 41 , 14746-14753	3:7 CH ₃ CN/H ₂ O	.0584	$1.34 (\pm 0.87) \times 10^{6}$
Org. Biomol. Chem., 2017, 15, 2211–	1:1 CH ₃ OH/H ₂ O	.011	9.06×10^{7}
2216			
Inorg. Chem., 2012, 51 , 9226–9231	C ₂ H ₅ OH	-	$9.8 imes 10^5$
Analyst, 2013, 138, 1903–1907	1:4 CH ₃ OH/H ₂ O	0.1	2.18×10^{5}
Sensors and Actuators B, 2014, 204,	H ₂ O	51 ppb	4.9×10^5
474–479.			
J. Fluoresc, 2017, 27,1871–1875	9:1 CH ₃ OH/H ₂ O	0.047	-
Inorg. Chem., 2011, 50, 10041–10046	CH ₂ Cl ₂ /CH ₃ CN	-	3.7×10^4
	(1:9)		
Inorg. Chem., 2014, 53, 12665–12667	EtOH/H ₂ O (1:1)	5.57	1.4×10^4
Analyst, 2013, 138, 901–906	1:1	0.048	$9.45 imes 10^6$
	CH ₃ CN/HEPES		
Spectrochimica Acta Part A: Molecular	C ₂ H ₅ OH	0.276	-
and Biomolecular Spectroscopy, 2016,			
163 , 120–126			
Dalton Trans., 2015, 44,	DMF-H ₂ O (1 : 1)	0.010	$(7.7 \pm 0.8) \times 10^{6}$
104–109			
Org. Biomol. Chem., 2013, 11, 3014-	CH ₃ CN–HEPES	0.219	$5.59 imes 10^5$
3019	buffer (1 : 1)		
<i>Chem. Asian J.</i> 2013, 8 , 1441 – 1446	CH ₃ CN		$4.4 (\pm 0.9) \times 10^4$
J. Am. Chem. Soc. 2008, 130, 16160–	Tris-	-	7.2×10^{3}
16161	HCl (0.02 M)		
Org. Lett, 2007, 9, 3829-3832	50 mM HEPES	-	$(8.14 \pm 3.01) \times 10^{6}$
Chem. Eur. J., 2010, 16, 919–930	MeCN/H2O (1:1	-	~10 ⁶
Our probe (In this work)	H ₂ O	0.18	$2.57\pm1.06\times10^5$

Table S1. Comparison of LOD and association constant for the sensing probe **LiBDP** and the reported sensors for the detection of Cd^{2+} .

2f. pH dependency study

Fig S30: Relative fluorescence intensity of **LiBDP** at various pH values exhibiting the operational pH range of 5.5 to 8.

2g. Anion sensitivity study

Fig S31: Emission spectra of **LiBDP** (5×10^{-6} M) upon addition of 1 equiv. of Cd²⁺ followed by various anions.

2h. Reversibility studies of BDP-Cd²⁺ by continuous variation of S²⁻ ion concentration

Fig S32: Fluorescence recovery responses of LiBDP-Cd²⁺ (5 μ M in H₂O) upon successive addition of S²⁻.

2i. Preparation of LiBDP test paper:

Test papers of **LiBDP** were prepared by dipping the pieces of filter paper (Whatman 41) in MeOH (1 mM) solution of **LiBDP**, and then dried in air. The test papers coated with **LiBDP** were then immersed to the various concentrations of Cd^{2+} (0.1 µM to 100 µM). After dipping the test paper (**LiBDP**) color changed from light red to increasing intensity of green fluorescence which can be detected by naked eye (under UV illumination at 365 nm) as shown in Fig. 9 in the main manuscript.

2j. Cell imaging study:

Chronic myeloid leukemia cells (K562) were procured from National Centre for Cell Science, Pune, India. Cells were cultured in RPMI 1640 media supplemented with 10% fetal bovine serum and maintained in a humidified incubator with 5% CO₂ and at 37 $^{\circ}$ C. The fluorescence imaging of K562 cells with **LiBDP** and followed by the addition of Cd²⁺ was observed under confocal microscope imaging system (FV 1000, Olympus, Japan).

2k. Computational details:

The density functional theory (DFT) calculation and geometry optimization was carried out using the Gaussian 09 program based on Becke's three-parameter set with Lee-Yang-Parr correlation functional (B3LYP).⁹ The LanL2DZ (Los-Alamos National Laboratory (LANL) effective core potentials to describe the core electrons together with the split valence double-zeta) basis set was employed for Cd element while the 6-31G(d,p) basis set was assigned to other elements (C, H, B, N Li and F).

Fig S33: Optimized geometry of model probe molecule **LiBDP** (Left) and proposed Cd²⁺-coordination (Right) obtained from DFT computed optimized structure.

LUMO+2 = -1.058 eV

LUMO+1 = -1.279 eV

LUMO = -2.158 eV

HOMO = -5.166 eV

LUMO+2 = -1.622 eV

LUMO+1 = -1.748 eV

LUMO = -3.095 eV

HOMO = -6.056 eV

HOMO-1 = -5.385 eV

HOMO-2 = -6.242 eV

HOMO-1 = -6.719 eV

HOMO-2 = -6.758 eV

HOMO-3 = -6.448 eV

LiBDP

[BDP-Cd²⁺]

Fig. S34: Selected Frontier Molecular Orbitals (FMOs) of **LiBDP** and **[BDP·Cd(II)]** complex, estimated from DFT calculations.

3. References

- 1. X. Shen, H. Liu, Y. Li and S. Liu, *Macromolecules*, 2008, 41, 2421.
- 2. X. Jiang, C. Wong, P. Lo and D. K. P. Ng, *Dalton Trans.*, 2012, **41**, 1801.
- 3. G. Meng, M. L. Zheng and M. Wang, org. prep. proced. Int., 2011, 43, 308.

- 4. Y. He, M. Lin, Z. Li, X. Liang, G. Li and J. C. Antilla, Org. Lett., 2011, 13, 4490.
- 5. J. Q. Umberger, and V. K. Lamer, J. Am. Chem. Soc., 1945, 67, 1099.
- 6. A. Chakraborty, D. Chakrabarty, P. Hazra, D. Seth and N. Sarkar, *Chem. Phys. Lett.*, 2003, **382**, 508.
- (a) V. P Singh, K. Tiwari, M. Mishra, N. Srivastava and S. Saha, Sens. Actuators, B, 2013, 182, 546.
 (b) J. Bourson, J. Pouget and B. Valeur, J. Phys. Chem., 1993, 97, 4552.
- (a) IUPAC commission on spectrochemical and other optical procedures for analysis, *Pure. Appl. Chem.*, 1976, **45**, 107. (b) Y. Chen, C. Zhu, J. Yang, J. Li, Y. Jiao, W. He, J. Chen and Z. Guo, *Chem. Commun.*, 2012, **48**, 5094. (c) B. In, G. W. Hwang and K. Lee, *Bioorg. Med. Chem. Lett.*, 2016, **26**, 4477.
- (a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Gaussian Inc., Wallingford, CT, 2009. (b) M. Reiher, O. Salomon and B. A. Hess, *Theor. Chem. Acc.* 2001, **107**, 48.