Supplementary Information

3D Walking Palm-like Core-Shell CoMoO₄@NiCo₂S₄@Nickel Foam Composite for High-performance Supercapacitors

Iftikhar Hussain ^a, Awais Ali^a, Charmaine Lamiel ^a, Saad Gomaa Mohamed ^{a, b}, Sumanta Sahoo ^a, Jae-Jin Shim^{a,*}

^a School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea

^bMining and Metallurgy Engineering Department, Tabbin Institute for Metallurgical Studies, (TIMS), Tabbin, Helwan 109, Cairo 11421, Egypt *Corresponding author: jjshim@yu.ac.kr (Prof. J.J. Shim)

Fig. S1 SEM images of walking palm-like core-shell CoMoO₄@NiCo₂S₄@NF after 2 h of reaction at low (a) and high (b) magnifications.

Fig. S2 SEM images of CoMoO₄@NF at low (a) and high (b) magnifications.

Fig. S3. TEM images of NiCo₂S₄ (a), CoMoO₄ (b), and walking palm-like core-shell CoMoO₄@NiCo₂S₄ (c); and HRTEM image of walking palm-like core-shell CoMoO₄@NiCo₂S₄ (d).

Fig. S4 EDS spectra of CoMoO₄@NF (a) and NiCo₂S₄@NF (b).

Fig. S5 XP spectra of the as-prepared NiCo₂S₄@NF: (a) survey, (b) Ni 2p, (c) Co 2p, and (d) S 2p.

Fig. S6 XP spectra of the as-prepared CoMoO₄@NF: (a) survey, (b) Co 2p, (c) Mo 3d, and (d) O 1s.

Fig. S7 CV curves of (a) NiCo₂S₄@NF and (b) CoMoO₄@NF at scan rates in the range of 5 to 100 mV s⁻¹ and (c) CV curves based on active masses of electrode materials.

Fig. S8 GCD curves of NiCo₂S₄@NF (a) and CoMoO₄@NF (b) at current densities in the range of 5 to 10 mA cm⁻¹.

Fig. S9 Areal capacitances of CoMoO₄@NiCo₂S₄@NF, NiCo₂S₄@NF, and CoMoO₄@NF at different current densities.

Fig. S10 Capacitance retention and coulombic efficiency of $NiCo_2S_4@NF$ (a) and $CoMoO_4@NF$ (b) for 10,000 cycles.

Fig. S11 CV curves of walking palm-like core-shell CoMoO₄@NiCo₂S₄@NF (a) and CoMoO₄@NF (b) before the cycling test and after 10,000 cycles.

Fig. S12 SEM images of walking palm-like CoMoO₄@NiCo₂S₄@NF before cycling (a) and after 10,000 cycles (b).

Fig. S13 XRD pattern of walking palm-like core-shell CoMoO₄@NiCo₂S₄@NF after 10,000 cycles.

Fig. S14 (a) Schemetic diagram of the fabricated ASC device, (b) CV curves of the ASC device at different scan rates.

Fig. 15 CV curves at different scan rates (a) and GCD curves at different current densities (b), both for the NiCo₂S₄@NF//AC@NF ASC device; CV curves at different scan rates (c) and GCD curves at different current densities (d), both for the CoMoO₄@NF//AC@NF ASC device.

Fig. S16 Areal capacitances of NiCo₂S₄@NF//AC@NF and CoMoO₄@NF//AC@NF ASC devices at different current densities.

Supercapacitor device	Electrolyte	Potential window (V)	C _{a,} (F cm ⁻²)	ED (Wh kg ⁻¹)	PD at max ED (kW kg ⁻¹)	Ref. No.
NiCo ₂ S ₄ @PPy //AC	ЗМ КОН	0 to 1.6	3.24 at 5 mA cm ⁻²	34.6	0.12	S1
NiCo ₂ S ₄ @NiO //AC	ЗМ КОН	0 to 1.6	0.59 at 2 mA cm ⁻²	30.3	0.28	S2
NiCo ₂ S ₄ @PANI // Graphene	6М КОН	0 to 1.6	2.1 at 5 mA cm ⁻²	64.9	0.27	S3
CoMoO4@NiMoO4 //AC	2М КОН	0 to 1.6	NA	28.7	0.26	S4
NiCo ₂ S ₄ //AC	ЗМ КОН	0 to 1.6	0.35 at 5 mA cm ⁻²	22.5	0.73	This work
CoMoO ₄ //AC	ЗМ КОН	0 to 1.6	0.29 at 5 mA cm ⁻²	19.0	0.72	This work
CoMoO4@NiCo2S4 //AC	ЗМ КОН	0 to 1.6	4.18 at 5 mA cm ⁻²	60.2	0.18	This work

Table S1. Comparison for energy and power densities of different NiCo₂S₄ and CoMoO₄ asymmetric supercapacitor device

 C_{a} : Areal capacitance, ED: Energy density, PD: Power density

- S1. M. L. Yan, Y. D. Yao, J. Q. Wen, L. Long, M. L. Kong, G. G. Zhang, X. M. Liao, G. F. Yin and Z. B. Huang, ACS Appl. Mater. Interfaces, 2016, 8, 24525-24535.
- S2. Y. Y. Huang, T. L. Shi, S. L. Jiang, S. Y. Cheng, X. X. Tao, Y. Zhong, G. L. Liao and Z.
 R. Tang, *Sci. Rep-Uk*, 2016, 6.
- S3. Liu, X., Wu, Z., Yin, Y., Chem. Eng. J., 2017, 323, 330-339.
- S4. Z. Q. Zhang, H. D. Zhang, X. Y. Zhang, D. Y. Yu, Y. Ji, Q. S. Sun, Y. Wang and X. Y. Liu, J. Mater. Chem. A, 2016, 4, 18578-18584.