Electronic Supplementary Information

$\mathrm{Ba}_{3} \mathrm{~B}_{10} \mathrm{O}_{17} \mathrm{Br}_{2}$: A New Barium Borate Halide with B-O Layered Structure

S. J. Han, ${ }^{\text {a,\# }}$ H. P. Wu, ${ }^{\text {a,\# }}$ H. Li, ${ }^{\text {a,b }}$ Z. H. Yang, ${ }^{\text {a }}$ S. L. Pan*a and H. H. Yu*a
${ }^{\text {a }}$ CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics \& Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.
${ }^{\text {b }}$ University of Chinese Academy of Sciences, Beijing 100049, China.
*Corresponding authors, E-mails: slpan@ms.xjb.ac.cn

Experimental Section

Synthesis

$\mathrm{Ba}_{3} \mathrm{~B}_{10} \mathrm{O}_{17} \mathrm{Br}_{2}$ was obtained in the sealed system. First, the raw materials $\left(\mathrm{BaF}_{2}, \mathrm{KBr}\right.$ and $\mathrm{B}_{2} \mathrm{O}_{3}$ at the mole of $1: 1: 3$) were put into a Pt crucible to be preheated at $350^{\circ} \mathrm{C}$ for 5 h , then cooled to room temperature and ground. After that, we loaded the preheated mixture into a tidy quartz tube which was washed using deionized water and dried at high temperature, and then the tube was flame-sealed under $10^{-3} \mathrm{~Pa}$. The tube was heated to $650{ }^{\circ} \mathrm{C}$, held at $650{ }^{\circ} \mathrm{C}$ for 20 h . Subsequently, it was cooled to $550^{\circ} \mathrm{C}$ at a rate of $1.5^{\circ} \mathrm{C} / \mathrm{h}$, then cooled to $350^{\circ} \mathrm{C}$ at a rate of 2.5 ${ }^{\circ} \mathrm{C} / \mathrm{h}$, finally lowered to $30^{\circ} \mathrm{C}$ at a rate of $10^{\circ} \mathrm{C} / \mathrm{h}$. During the cooling process, the crystals were obtained. Colorless crystal was separated from the tube for structural characterization.

The polycrystalline sample of $\mathrm{Ba}_{3} \mathrm{~B}_{10} \mathrm{O}_{17} \mathrm{Br}_{2}$ was prepared through solid-state reaction in the sealed system. The mixture $\left(\mathrm{BaBr}_{2}, \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}\right.$ and $\mathrm{B}_{2} \mathrm{O}_{3}$ at the molar ratio of $\left.1: 2: 5\right)$ was preheated at $300^{\circ} \mathrm{C}$ for 3 h , then elevated to $400^{\circ} \mathrm{C}$ and held at $400^{\circ} \mathrm{C}$ for 10 h . Before and after sintering at $400{ }^{\circ} \mathrm{C}$, the sample was cooled to room temperature and ground. Then the preheated mixture was loaded into a tidy quartz tube, which was flame-sealed under $10^{-3} \mathrm{~Pa}$. The tube was heated to $565^{\circ} \mathrm{C}$ and held for 65 h .

The purity of the polycrystalline was confirmed by powder X-ray diffraction. The data were carried out through a Bruker D2 PHASER diffractometer using Cu K α radiation ($\lambda=1.5418 \AA$). The diffraction patterns were set in the range of $10^{\circ}-70^{\circ}(2 \theta)$, its scan step width and fixed counting time are 0.02° and $1 \mathrm{~s} /$ step, respectively. The diffraction patterns are well consistent with the calculated ones except several impurity peaks (Figure S1 in the Supporting Information (SI)).

Structural Determination.

Collection of the single-crystal XRD data was done at 296(2) K using a Bruker SMART APEX II 4K CCD diffractometer with Mo K α radiation ($\lambda=0.71073 \AA$), and the data were integrated with a SAINT program. ${ }^{1}$ The direct methods and SHELXTL system were used to solve and refine the crystal structure, respectively. ${ }^{2}$ All of the atoms positions were refined by full matrix leastsquares techniques. The information of crystal data and structural refinements is summarized in Table S1, the atomic coordinates and the equivalent isotropic displacement parameters are given in Table S2. Table S3 lists the selected bond lengths and angles.

Optical Characterization.

The infrared (IR) spectrum was measured to specify the coordination of boron. And it was recorded using Shimadzu IRAffinity ${ }^{-1}$ Fourier transform IR spectrometer with the range: 400-4000 cm^{-1}. The sample was mixed with dried KBr .

For determining the UV cutoff edge of $\mathrm{Ba}_{3} \mathrm{~B}_{10} \mathrm{O}_{17} \mathrm{Br}_{2}$, the UV diffuse reflectance spectrum was measured using Shimadzu SolidSpec-3700DUV spectrophotometer. Data were collected in the wavelength range 190 to 2500 nm . And the reflectance spectrum was converted to absorbance with the Kubelka-Munk function. ${ }^{3}$

Theoretical Calculations.

The electronic and band structures as well as linear optical property calculations were performed by employing CASTEP, ${ }^{4}$ a plane-wave pseudopotential density functional theory (DFT) package, with the norm-conserving pseudopotentials (NCPs). ${ }^{5-7}$ The exchange-correlation functional was Perdew-Burke-Emzerhof (PBE) functional within the generalized gradient approximation (GGA). ${ }^{8}$ The plane-wave energy cutoff was set at 830.0 eV . Self-consistent field (SCF) calculations were performed with a convergence criterion of $5 \times 10^{-7} \mathrm{eV}$ /atom on the total energy. The Monkhorst-

Pack Scheme k-points grid sampling was set at $2 \times 2 \times 1$ for the Brillouin zone ($B Z$). The valence electrons of the elements in $\mathrm{Ba}_{3} \mathrm{~B}_{10} \mathrm{O}_{17} \mathrm{Br}_{2}$ were calculated as follows: $\mathrm{Ba} 5 s^{2} 5 p^{6} 6 s^{2}, \mathrm{~B} 2 s^{2} 2 p^{1}$, O $2 s^{2} 2 p^{4}$ and $\mathrm{Br} 4 s^{2} 5 p^{5}$, respectively. The empty bands were set as 3 times the valence bands in the calculation to ensure the convergence of optical properties. The Broyden-Fletcher-GoldfarbShanno (BFGS) minimization technique was employed in geometry optimization during the calculation and the converged criteria are that the residual forces on the atoms, the displacements and the energy change of atoms are less than $0.01 \mathrm{eV} / \AA \AA^{\circ} 5 \times 10^{-4} \AA$ and $5.0 \times 10^{-}$ ${ }^{6} \mathrm{eV}$, respectively. The default values of the CASTEP code were retained for other parameters and convergent criteria.

Table S1 Crystal data and structure refinement for $\mathrm{Ba}_{3} \mathrm{~B}_{10} \mathrm{O}_{17} \mathrm{Br}_{2}$.

Empirical formula	$\mathrm{Ba}_{3} \mathrm{~B}_{10} \mathrm{O}_{17} \mathrm{Br}_{2}$
Formula weight	951.94
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, Space group	Monoclinic, C2/c
a (Å), α (deg.)	11.656(10), 90
b (Å), β (deg.)	6.647(6), 102.93(2)
$c(A), \gamma$ (deg.)	22.485(19), 90
Volume (Å3)	1698(3)
Z, Calculated density	$4,3.724 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$11.678 \mathrm{~mm}^{-1}$
F(000)	1696
Theta range for data collection	3.55 to 27.58 deg.
Limiting indices	$-15 \leq h \leq 14,-8 \leq k \leq 8,-28 \leq 1 \leq 20$
Reflections collected/unique	5069/1949 [Rint = 0.0404]
Completeness to theta $=27.58$	99.30\%
Max. and min. transmission	0.7456 and 0.5249
Refinement method	Full-matrix least-squares on $F_{o}{ }^{2}$
Data/restraints/parameters	1949/24/147
Goodness-of-fit on $F_{o}{ }^{2}$	1.093
Final R indices $\left[F_{o}{ }^{2}>2 \sigma\left(F_{o}{ }^{2}\right)\right]^{\text {a }}$	$R_{1}=0.0296, w R_{2}=0.0688$
R indices (all data) ${ }^{\text {a }}$	$R_{1}=0.0373, w R_{2}=0.0732$
Extinction coefficient	0.00020(6)
Largest diff. peak and hole	0.987 and -1.209 e ${ }^{-3}$

Table S2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for $\mathrm{Ba}_{3} \mathrm{~B}_{10} \mathrm{O}_{17} \mathrm{Br}_{2}$. $\mathrm{U}_{\text {eq }}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	U_{eq}
$\mathrm{Ba}(1)$	$1135(1)$	$2194(1)$	$554(1)$	$9(1)$
$\mathrm{Ba}(2)$	0	$3526(1)$	2500	$27(1)$
$\mathrm{B}(1)$	$4685(5)$	$12211(9)$	$869(3)$	$5(1)$
$\mathrm{B}(2)$	$3372(5)$	$9145(9)$	$730(3)$	$5(1)$
$\mathrm{B}(3)$	$3880(5)$	$5569(9)$	$1073(3)$	$5(1)$
$\mathrm{B}(4)$	$1803(5)$	$6781(10)$	$715(3)$	$7(1)$
$\mathrm{B}(5)$	$4765(6)$	$13328(9)$	$1907(3)$	$8(1)$
$\mathrm{O}(1)$	$4166(3)$	$7746(6)$	$982(2)$	$7(1)$
$\mathrm{O}(2)$	$2572(3)$	$5307(6)$	$906(2)$	$8(1)$
$\mathrm{O}(3)$	$5616(3)$	$11370(6)$	$583(2)$	$6(1)$
$\mathrm{O}(4)$	$4461(3)$	$14322(6)$	$701(2)$	$4(1)$
$\mathrm{O}(5)$	$2171(3)$	$8636(6)$	$565(2)$	$10(1)$
$\mathrm{O}(6)$	5000	$12735(8)$	2500	$11(1)$
$\mathrm{O}(7)$	$4968(3)$	$11874(6)$	$1516(2)$	$8(1)$
$\mathrm{O}(8)$	$3590(3)$	$11050(5)$	$584(2)$	$5(1)$
$\mathrm{O}(9)$	$4295(3)$	$5161(6)$	$1725(2)$	$8(1)$
$\mathrm{Br}(1)$	$2249(1)$	$809(1)$	$1946(1)$	$33(1)$

Table S3. Selected bond lengths and angles for $\mathrm{Ba}_{3} \mathrm{~B}_{10} \mathrm{O}_{17} \mathrm{Br}_{2}$.

$\mathrm{Ba}(1)-\mathrm{O}(5) \# 1$	2.653(4)	$\mathrm{Ba}(2)-\mathrm{Br}(1)$	3.626(2)
$\mathrm{Ba}(1)-\mathrm{O}(2)$	2.669(4)	$\mathrm{B}(1)-\mathrm{O}(7)$	1.436(7)
$\mathrm{Ba}(1)-\mathrm{O}(1) \# 2$	2.704(4)	$\mathrm{B}(1)-\mathrm{O}(4)$	1.462(7)
$\mathrm{Ba}(1)-\mathrm{O}(4) \# 3$	2.801(4)	$\mathrm{B}(1)-\mathrm{O}(3)$	1.489(7)
$\mathrm{Ba}(1)-\mathrm{O}(3) \# 2$	2.845(4)	$\mathrm{B}(1)-\mathrm{O}(8)$	1.507(7)
$\mathrm{Ba}(1)-\mathrm{O}(8) \# 4$	2.894(4)	$\mathrm{B}(2)-\mathrm{O}(1)$	1.345(7)
$\mathrm{Ba}(1)-\mathrm{O}(4) \# 4$	2.929(4)	$\mathrm{B}(2)-\mathrm{O}(8)$	1.347(7)
$\mathrm{Ba}(1)-\mathrm{O}(8) \# 1$	2.947(4)	$\mathrm{B}(2)-\mathrm{O}(5)$	1.407(7)
$\mathrm{Ba}(1)-\mathrm{O}(3) \# 4$	3.044(4)	$\mathrm{B}(3)-\mathrm{O}(4) \# 1$	1.450(7)
$\mathrm{Ba}(1)-\mathrm{Br}(1)$	3.242(3)	$\mathrm{B}(3)-\mathrm{O}(9)$	1.462(7)
$\mathrm{Ba}(2)-\mathrm{O}(6) \# 2$	2.798(6)	$\mathrm{B}(3)-\mathrm{O}(2)$	1.497(7)
$\mathrm{Ba}(2)-\mathrm{O}(9) \# 5$	2.842(4)	$\mathrm{B}(3)-\mathrm{O}(1)$	1.509(7)
$\mathrm{Ba}(2)-\mathrm{O}(9) \# 2$	2.842(4)	$B(4)-O(2)$	1.332(7)
$\mathrm{Ba}(2)-\mathrm{O}(7) \# 5$	3.131(4)	$\mathrm{B}(4)-\mathrm{O}(5)$	1.372(7)
$\mathrm{Ba}(2)-\mathrm{O}(7) \# 2$	3.131(4)	$\mathrm{B}(4)-\mathrm{O}(3) \# 2$	1.376(7)
$\mathrm{Ba}(2)-\mathrm{Br}(1) \# 6$	3.514(3)	$B(5)-\mathrm{O}(6)$	1.358(7)
$\mathrm{Ba}(2)-\mathrm{Br}(1) \# 7$	3.514(3)	$B(5)-O(9) \# 9$	1.361(7)
$\mathrm{Ba}(2)-\mathrm{Br}(1) \# 8$	3.626(2)	$\mathrm{B}(5)-\mathrm{O}(7)$	1.362(8)
$\mathrm{O}(5) \# 1-\mathrm{Ba}(1)-\mathrm{O}(1) \# 2$	122.57(12)	$\mathrm{O}(7) \# 5-\mathrm{Ba}(2)-\mathrm{Br}(1)$	134.54(8)
$\mathrm{O}(1) \# 2-\mathrm{Ba}(1)-\mathrm{O}(4) \# 3$	51.81(12)	$\mathrm{Br}(1) \# 8-\mathrm{Ba}(2)-\mathrm{Br}(1)$	120.25(6)
$\mathrm{O}(4) \# 3-\mathrm{Ba}(1)-\mathrm{O}(8) \# 1$	121.32(11)	$\mathrm{O}(7)-\mathrm{B}(1)-\mathrm{O}(3)$	110.9(4)
$\mathrm{O}(4) \# 4-\mathrm{Ba}(1)-\mathrm{O}(8) \# 1$	87.30(10)	$\mathrm{O}(4)-\mathrm{B}(1)-\mathrm{O}(8)$	107.2(4)
$\mathrm{O}(5) \# 1-\mathrm{Ba}(1)-\mathrm{O}(3) \# 4$	120.35(12)	$\mathrm{O}(3)-\mathrm{B}(1)-\mathrm{O}(8)$	104.6(4)
$\mathrm{O}(5) \# 1-\mathrm{Ba}(1)-\mathrm{Br}(1)$	69.81(10)	$\mathrm{O}(1)-\mathrm{B}(2)-\mathrm{O}(8)$	127.1(5)
$\mathrm{O}(2)-\mathrm{Ba}(1)-\mathrm{Br}(1)$	81.03(10)	$\mathrm{O}(1)-\mathrm{B}(2)-\mathrm{O}(5)$	119.7(5)
$\mathrm{O}(1) \# 2-\mathrm{Ba}(1)-\mathrm{Br}(1)$	83.32(10)	$\mathrm{O}(8)-\mathrm{B}(2)-\mathrm{O}(5)$	113.1(5)
$\mathrm{O}(4) \# 4-\mathrm{Ba}(1)-\mathrm{Br}(1)$	142.15(9)	$\mathrm{O}(4) \# 1-\mathrm{B}(3)-\mathrm{O}(9)$	112.3(4)
$\mathrm{O}(3) \# 4-\mathrm{Ba}(1)-\mathrm{Br}(1)$	161.38(7)	$\mathrm{O}(9)-\mathrm{B}(3)-\mathrm{O}(2)$	108.6(4)
$\mathrm{O}(6) \# 2-\mathrm{Ba}(2)-\mathrm{O}(9) \# 5$	141.93(8)	$\mathrm{O}(4) \# 1-\mathrm{B}(3)-\mathrm{O}(1)$	108.9(4)
$\mathrm{O}(9) \# 2-\mathrm{Ba}(2)-\mathrm{O}(7) \# 5$	161.53(10)	$\mathrm{O}(9)-\mathrm{B}(3)-\mathrm{O}(1)$	106.3(4)
$\mathrm{O}(6) \# 2-\mathrm{Ba}(2)-\mathrm{O}(7) \# 2$	44.72(8)	$\mathrm{O}(2)-\mathrm{B}(3)-\mathrm{O}(1)$	108.7(4)
$\mathrm{O}(9) \# 2-\mathrm{Ba}(2)-\mathrm{O}(7) \# 2$	99.79(12)	$\mathrm{O}(2)-\mathrm{B}(4)-\mathrm{O}(3) \# 2$	119.7(5)
$\mathrm{O}(7) \# 5-\mathrm{Ba}(2)-\mathrm{O}(7) \# 2$	89.45(16)	$\mathrm{O}(5)-\mathrm{B}(4)-\mathrm{O}(3) \# 2$	118.6(5)
$\mathrm{O}(6) \# 2-\mathrm{Ba}(2)-\mathrm{Br}(1) \# 6$	64.42(3)	$\mathrm{O}(6)-\mathrm{B}(5)-\mathrm{O}(9) \# 9$	122.3(6)
$\mathrm{O}(9) \# 2-\mathrm{Ba}(2)-\mathrm{Br}(1)$	61.91(9)	$\mathrm{O}(6)-\mathrm{B}(5)-\mathrm{O}(7)$	113.7(5)

Symmetry transformations used to generate equivalent atoms:

```
#1 x, y-1, z #2 x-1/2, y-1/2, z #3 x-1/2, y-3/2, z #4 -x+1/2, -y+3/2, -z
#5 -x+1/2, y-1/2, -z+1/2 #6 -x+1/2, y+1/2,-z+1/2 #7 x-1/2, y+1/2,z
#8 -x, y, -z+1/2 #9 x, y+1, z
#11 x+1/2,y+3/2,z #12-x+1, y, -z+1/2
    #10 x+1/2, y+1/2, z
#13 x+1/2, y-1/2, z
```

Table S4. The barium borate halogenides.

No.	Compounds	Space group	B-O anionic framework	Cation /Boron	ref
1	$\mathrm{Ba}_{7}\left(\mathrm{BO}_{3}\right)_{3} \mathrm{~F}_{5}$	$P 3_{1} \mathrm{C}$	Isolated BO_{3}	2.33	9
2	$\mathrm{Ba}_{7} \mathrm{~B}_{3.51} \mathrm{O}_{10.53} \mathrm{~F}_{3.47}$	$P 6_{3}$	Isolated BO_{3}	1.99	10
3	$\mathrm{Ba}_{5}\left(\mathrm{BO}_{3}\right)_{3} \mathrm{~F}$	$P n m a$	Isolated BO_{3}	1.67	11
4	$\mathrm{Ba}_{5}\left(\mathrm{~B}_{2} \mathrm{O}_{5}\right)_{2} \mathrm{~F}_{2}$	$C 2 / c$	Isolated $\mathrm{B}_{2} \mathrm{O}_{5}$	1.25	12
5	$\mathrm{Ba}_{3} \mathrm{~B}_{6} \mathrm{O}_{11} \mathrm{~F}_{2}$	$P 2_{1}$	3 D framework	0.5	13,14
6	$\mathrm{Ba}_{4} \mathrm{~B}_{11} \mathrm{O}_{20} \mathrm{~F}$	$C m c 2_{1}$	3D framework	0.36	15
7	$\mathrm{Ba}_{2} \mathrm{~B}_{5} \mathrm{O}_{9} \mathrm{Cl}$	$P n n 2$	$3 D$ framework	0.4	16
8	$\mathrm{Ba}_{2} \mathrm{~B}_{5} \mathrm{O}_{9} \mathrm{Br}$	$P m m 2$	$3 D$ framework	0.4	16
9	$\mathrm{Ba}_{5}\left(\mathrm{BO}_{3}\right)_{3} \mathrm{Cl}$	$C 222_{1}$	Isolated BO_{3}	1.67	17
10	$\mathrm{Ba}_{5}\left(\mathrm{BO}_{3}\right)_{3} \mathrm{Br}$	$C 222_{1}$	Isolated BO_{3}	1.67	17
11	$\mathrm{Ba}_{2} \mathrm{BO}_{3} \mathrm{Br}$	$P \overline{3} m 1$	Isolated BO_{3}	2	18
12	$\mathrm{Ba}_{3} \mathrm{BO}_{3} \mathrm{Br}_{3}$	$P \overline{1}$	Isolated BO_{3}	3	18
13	$\mathrm{Ba}_{3} \mathrm{~B}_{10} \mathrm{O}_{17} \mathrm{Br}_{2}$	$C 2 / \mathrm{c}$	2D ($\left.\mathrm{B}_{10} \mathrm{O}_{17}\right)_{\infty}$ double layer	0.3	This work

Figure S 1 . Experimental and calculated XRD patterns of $\mathrm{Ba}_{3} \mathrm{~B}_{10} \mathrm{O}_{17} \mathrm{Br}_{2}$.

Figure S2. (a) The arrangement of $\mathrm{Ba}(1) \mathrm{O}_{9} \mathrm{Br}$; (b) The arrangement of $\mathrm{Ba}(2) \mathrm{O}_{5} \mathrm{Br}_{4}$; (c) The 3D Ba-OBr framework.

(b)

Figure S3. The 2D layer formed by BrBa_{3}.

Figure S 4 . The structures of $\mathrm{Ba}_{3} \mathrm{~B}_{6} \mathrm{O}_{11} \mathrm{~F}_{2}, \mathrm{Ba}_{4} \mathrm{~B}_{11} \mathrm{O}_{20} \mathrm{~F}$ and $\mathrm{Ba}_{2} \mathrm{~B}_{5} \mathrm{O}_{9} \mathrm{Cl}$.

Figure S 5 . The structure of $\mathrm{Ba}_{2} \mathrm{~B}_{10} \mathrm{O}_{17}$.

References

(1) SAINT, Version 7.60A, Bruker Analytical X-ray Instruments, Inc., Madison, WI, 2008.
(2) G. M. Sheldrick, SHELXTL, version 6.14; Bruker Analytical X-ray Instruments, Inc.: Madison, WI, 2003.
(3) J. Tauc, Mater. Res. Bull., 1970, 5, 721.
(4) S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. - Cryst. Mater., 2005, 220, 567.
(5) A. M. Rappe, K. M. Rabe, E. Kaxiras, J. D. Joannopoulos, Phys. Rev. B, 1990, 41, 1227.
(6) J. Lin, A. Qteish, M. Payne, V. Heine, Phys. Rev. B, 1993, 47, 4174.
(7) M.-H. Lee, Ph.D. Thesis, The University of Cambridge, Cambridge, U.K., 1996.
(8) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
(9) D. A. Keszler, A. Akella, K. I. Schaffers, T. Alekel, Mater. Res. Soc. Symp. Proc., 1994, 329, 15.
(10) T. B. Bekker, S. V. Rashchenko, V. V. Bakakin, Y. V. Seryotkin, P. P. Fedorov, A. E. Kokh and S. Y. Stonoga, CrystEngComm, 2012, 14, 6910.
(11) S. V. Rashchenko, T. B. Bekker, V. V. Bakakin, Y. V. Seryotkin, A. E. Kokh, P. Gille, A. I. Popov, P. P. Fedorov, J. Appl. Crystallogr., 2013, 46, 1081.
(12) T. Alekel, D. A. Keszler, J. Solid State Chem., 1993, 106, 310.
(13) C. D. McMillen, J. T. Stritzinger, and J. W. Kolis, Inorg. Chem., 2012, 51, 3953.
(14) H. W. Yu, H. P. Wu, S. L. Pan, Z. H. Yang, X. Su and F. F. Zhang, J. Mater. Chem., 2012, 22, 9665. (15) H. P. Wu, H. W. Yu, Z. H. Yang, X. L. Hou, X. Su, S. L. Pan, K. R. Poeppelmeier, and J. M. Rondinelli, J. Am. Chem. Soc., 2013, 135, 4215.
(16) P. A. Plachinda, V. A. Dolgikh, S. Y. Stefanovich, P. S. Berdonosov, Solid State Sci., 2005, 7, 1194.
(17) O. Reckeweg, A. Schulz, F. J. DiSalvo, Z. Naturforsch., B: Chem. Sci., 2011, 66, 359.
(18) J. Zhao, R. K. Li, Solid State Sci., 2013, 24, 54.

