Design considerations for chiral frustrated Lewis pairs: B/N FLPs derived from 3,5-bicyclic aryl piperidines

Jolie Lam^a, Susanna Sampaolesi^b, James H. W. LaFortune^a, Jotham Coe^b, Douglas W. Stephan^{a*}

Supporting Information

Table of Contents

General Considerations	1
Spectra	2
Figure S1. ¹ H NMR spectrum of 1	2
Figure S2. ¹³ C{H} NMR spectrum of 1	2
Figure S3. ¹⁹ F NMR spectrum of 1	3
Figure S4. ¹ H NMR spectrum of 2	3
Figure S5. ¹³ C NMR spectrum of 2	4
Figure S6. ¹⁹ F NMR spectrum of 2	4
Figure S7. ¹ H NMR spectrum of 3	5
Figure S8. ¹³ C NMR spectrum of 3	5
Figure S9. ¹ H NMR spectrum of 4	6
Figure S10. ¹³ C{H} NMR spectrum of 4	6
Figure S11. ¹⁹ F NMR spectrum of 4	7
Figure S12. ¹ H NMR spectrum of 6	7
Figure S13. ¹ H NMR spectrum of 7	8
Figure S14. ¹³ C NMR spectrum of 7	8
Figure S15. ¹ H NMR spectrum of 8	9
Figure S16. ¹³ C NMR spectrum of 8	9
Figure S17. ¹ H NMR spectrum of 9	10
Figure S18. ¹³ C{H} NMR spectrum of 9	10
Figure S19. ¹⁹ F NMR spectrum of 9	11
Figure S20. ¹ H NMR spectrum of 10	11
Figure S21. ¹³ C{H} NMR spectrum of 10	12
Figure S22. ¹¹ B NMR spectrum of 10	12
Figure S23. ¹⁹ F NMR spectrum of 10	13
Figure S24. ¹ H NMR spectrum of 11	13
Figure S25. ¹³ C{H} NMR spectrum of 11	14
Figure S26. ¹¹ B NMR spectrum of 11	14
Figure S27. ¹⁹ F NMR spectrum of 11	15
Figure S28. ¹ H NMR spectrum of 12	15
Figure S29. ¹³ C{H} NMR spectrum of 12	16
Figure S30. ³¹ P NMR spectrum of 12	
Figure S31. ¹¹ B NMR spectrum of 12	17
Figure S32. ¹⁹ F NMR spectrum of 12	17
Figure S33. ¹ H NMR spectrum for HD scrambling experiment with 11 in toluene-d ₈	
Gutmann-Beckett Test	
Table S1. Gutmann-Beckett test results	
Computational details	18
Table S2. FIA data for boranes	
Table S3. GEI data for boranes	
Table S4. Optimized Cartesian coordinates of 10	

Table S5. Optimized Cartesian coordinates of 10-F	21
Table S6. Optimized Cartesian coordinates of 11	22
Table S7. Optimized Cartesian coordinates of 11-F	23
Table S8. Optimized Cartesian coordinates of BPh_3	24
Table S9. Optimized Cartesian coordinates of BPh ₃ -F	25
Figure S34. Depictions of HOMO (left) and LUMO (right) of 10	26
Figure S35. Depictions of HOMO (left) and LUMO (right) of 11	26
References	27

General Considerations

All manipulations were carried out under dry, O₂-free N₂ using an MBraun glovebox and a Schlenk vacuum-line. Pentane and dichloromethane were collected from a Grubbs-type column system manufactured by Innovative Technology and into thick-walled glass Schlenk bombs with Youngtype Teflon valve stopcocks. Chloroform-d was obtained from Cambridge Isotope Laboratories, dried over CaH₂, and vacuum-transferred into Young bombs, Toluene-d₈ and benzene-d₆ was obtained from Sigma-Aldrich, dried over Na/benzophenone and vacuum-transferred into Young bombs. All solvents were degassed after purification and stored over 4 Å molecular sieves. $B(C_6F_5)_3$ was purchased from Boulder Scientific and used without further purification for the synthesis of bis(perfluorophenyl)borane. (E)-N-tert-butyl-1-phenylmethanimine and triethylsilane were purchased from Sigma-Aldrich, and dried and stored over 4 Å molecular sieves. Commercial reagents were purchased from Sigma-Aldrich, TCI Chemicals, Strem Chemicals or Alfa Aesar, and used without further purification unless indicated otherwise. Hydrogen gas (Grade 5.0) was obtained from Linde and purified through a Matheson Nanochem WeldAssure[™] gas purifier column prior to use. Deuterium hydride (extent of labeling: 96 mol% HD, 98 atom % D) and carbon ¹³C dioxide (99 atom % ¹³C, <3 atom % ¹⁸O) were purchased from Sigma Aldrich. (1R,3s,5S)-7,8difluoro-3-isopropyl-2,3,4,5-tetrahydro-1H-1,5-methanobenzo[d]azepin-3-ium chloride was received from Pfitzer and used without further purification. (E)-N-(1-phenylethylidene)aniline,¹ tris(2,6-difluorophenyl)borane,² (bis(perfluorophenyl)borane,³ were prepared according to literature methods.

NMR spectra were recorded on a Bruker Avance 400 MHz spectrometer or a Varian Mercury Plus 400 MHz spectrometer at 25 °C. Chemical shifts are given relative to SiMe₄ and referenced to the residual solvent signal (¹H, ¹³C) or relative to an external standard (¹¹B: 15% (Et₂O)BF₃, ³¹P: 85% H₃PO₄, ¹⁹F: CFCl₃). Chemical shifts are reported in ppm and coupling constants as scalar values in Hz. Mass spectrometry was carried out using an AB/Sciex QStar mass spectrometer with an ESI source or on a Hewlett-Packard GC/MS 6890 N that works with the EI technique (70 eV). Elemental analyses (C, H, N) were performed in-house with a Perkin Elmer 2400 Series II CHNS Analyzer

Spectra

Figure S9. ¹H NMR spectrum of **4**

Figure S12. ¹H NMR spectrum of **6**

Figure S13. ¹H NMR spectrum of **7**

Figure S15. ¹H NMR spectrum of 8

Figure S17. ¹H NMR spectrum of 9

Figure S23. ¹⁹F NMR spectrum of **10**

-

Figure S31. ¹¹B NMR spectrum of **12**

Figure S33. ¹H NMR spectrum for HD scrambling experiment with **11** in toluene-d₈

Gutmann-Beckett Test

In an inert atmosphere glovebox, 0.005 mmol of the Lewis acid (1 eqv., 2 mg for **12**, 5 mg for **13**) and 0.8 mg of Et_3PO (0.006 mmol, 1.2 eqv.) were added to 1 mL of solvent (DCM for **12**, C_6D_6 for **13**).⁴ A clear colourless solution was formed and ${}^{31}P{}^{1}H{}_{C}$ NMR was collected.

Table S1. G	utmann-Beckett	test results
-------------	----------------	--------------

	³¹ P{ ¹ H} (ppm)	Δ versus Et ₃ PO (ppm)
Et ₃ PO	52.2 (in DCM), 46.5 (in C ₆ D ₆)	-
Et ₃ PO + 10	52.4	0.2
Et ₃ PO + 11	74.3	27.8

Computational details

The tables contain the optimized coordinates of the compounds and their fluoride adducts (denoted as \mathbf{x} -F, additional possible geometries denoted alphabetically), calculated using the BP86 functional and the def2-TZVP basis set. All calculations were carried out in the gas phase.

Table S2. FIA data for boranes

Compound	Energy	Energy of F-	FIA
	(kJ/mol)	adduct (kJ/mol)	(kJ/mol)
10	-3478142.5	-3740334.9	350.1

BPh ₃	-1885741.0	-2147911.5	328.1
$B(C_6H_3F_2)_3$	-3447380.9	-3709585.2	362.3
11	-6473827.8	-6736111.6	441.4
$B(C_6F_5)_3$	-5789595.6	-6051890.2	452.6

Table S3. GEI data for boranes

Compound	Energy of	Energy of	GEI
-	HOMO (eV)	LUMO (eV)	(eV)
10	-5.445	-0.713	1.00
BPh ₃	-6.888	-2.256	2.04
$B(C_6H_3F_2)_3$	-6.993	-2.547	2.56
11	-5.538	-2.938	3.45
$B(C_6F_5)_3$	-7.651	-3.523	3.78

				(7 m m	
Number	Number	Type	X	y y	Stroms) 7
1	9	0	-0.900631	2.717975	-1.934365
2	9	0	1.084712	4.499207	-1.578456
3	.7	0	3.433290	-0.557609	0.615718
4	6	0	2.141240	-1.122122	1.022846
5	6	0	1.203826	-0.081218	_1 3020402
7	0	0	0 045202	2 452190	-0 995158
8	6	0	4.308752	-1.379187	-0.100289
9	6	0	1.993330	2.017030	0.905385
10	6	0	1.073946	3.380495	-0.814543
11	6	0	3.889613	-2.624385	-0.634505
12	6	0	6.078259	-3.023436	-1.620612
13	6	0	-1.187658	0.308278	-0.464885
14	6	0	6.513225	-1.811140	-1.079186
15	6	0	-5.12/180	1 400 601	0.830215
10	6	0	-3.907926	-1.488621	-0./68/59
18	6	0	-2 488818	0 725044	0.258339
19	6	0	4.004726	0.574683	1.354659
20	6	0	0.959568	1.084660	0.719023
21	6	0	-0.041556	1.269405	-0.243589
22	6	0	5.657611	-1.004938	-0.328341
23	6	0	2.931735	1.488945	1.978259
24	6	0	-5.473167	-1.017696	1.782159
25	6	0	1.970443	0.617146	2.813475
26	6	0	-5.468458	-2.411987	1.123362
27	6	0	-4.264361	-2.663553	0.193092
20	5	0	-6 329283	-0.179903	-1 341321
30	6	0	-6.192782	0.440256	-0.274332
31	6	0	-4.982223	-1.203889	-1.864236
32	1	0	2.864578	3.917126	0.253179
33	1	0	6.052185	-0.076773	0.080873
34	1	0	7.543010	-1.481007	-1.234617
35	1	0	6.753613	-3.650299	-2.204439
36	1	0	4.392561	-4.367448	-1.779974
37	1	0	2.876755	-2.986694	-0.468276
38	1	0	1.64/453	-1.528375	U.IZ65ZZ
40	1	0	2.200000	-0 595166	1 998794
41	1	0	-0.883754	-0.694708	-0.128629
42	1	0	-1.385640	0.224575	-1.544709
43	1	0	-5.058428	1.077611	1.451429
44	1	0	-2.977711	-1.768678	-1.293207
45	1	0	-2.295116	0.854655	1.342277
46	1	0	-2.780042	1.746105	-0.060914
47	1	0	4.688780	0.223183	2.156441
48	1	0	4.606927	1.174234	0.654612
49	1	0	3.438044	2.2/8536	2.552540
51	1	0	-6 453502	-0.838300	2 259869
52	1	0	1 296180	1 240271	3 419468
53	1	0	2.493401	-0.090364	3.475813
54	1	0	-5.474207	-3.181008	1.914478
55	1	0	-6.404023	-2.562180	0.566640
56	1	0	-4.437049	-3.583516	-0.394471
57	1	0	-3.374441	-2.871178	0.815454
58	1	0	-6.930447	-1.493821	-0.942038
59	1	0	-6.908411	-0.269089	-2.192790
60	1	0	-/.1/6303	0.625029	U.194661
62 61	⊥ 1	0	-3.91999/ -4 556083	1.3861U1 -0 467689	-0.///009
63	⊥ 1	0	-5.155599	-2.119677	-2.458052

Table S4. Optimized Cartesian coordinates of 10

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	9	0	-0.426637	3.411292	-1.983942
2	9	0	1.627442	4.894990	-1.096809
3	7	0	3.228228	-0.704888	0.573138
4	6	0	1.820146	-1.140027	0.659178
5	6	0	0.097300 4 594141	-3 396912	-1 608537
7	6	õ	0.346727	2.894827	-0.989426
8	6	0	4.125758	-1.510952	-0.111858
9	6	0	1.976847	1.981078	1.040922
10	6	0	1.415712	3.671828	-0.530511
11	6	0	3.687976	-2.611291	-0.898493
12	6	0	5.96951/ _1 1103/7	-3.144903	-1.564/94
14	6	0	6.418654	-2.080683	-0.777777
15	6	õ	-4.423434	-0.465065	1.245995
16	6	0	-3.797640	-1.115924	-1.196951
17	6	0	2.257512	3.231357	0.490234
18	6	0	-2.334599	0.891317	0.070824
19	6	0	3.770779	0.276712	1.519804
20	6	0	0.910194	1.203895	0.572287
21	6	0	0.056/12	1.62/35/	-0.459863
22	6	0	2 696014	-1.282680	-0.059419
23	6	0	-4 943142	-1 900440	1 495325
25	6	õ	1.549518	0.316526	2.671575
26	6	0	-5.328372	-2.688538	0.221495
27	6	0	-4.325001	-2.549164	-0.947383
28	6	0	-5.986336	0.228482	-0.727784
29	6	0	-5.499179	0.509961	0.713078
30	6	0	-4.865087	-0.132206	-1.730189
31	1	0	3.079900	3.866919	0.824437
3∠ 33	1	0	5.931654 7 488109	-0.4/3845	-0 711146
34	1	0	6.672046	-3.766439	-2.122649
35	1	õ	4.209603	-4.228251	-2.204927
36	1	0	2.629206	-2.855610	-0.958630
37	1	0	1.448793	-1.317967	-0.361167
38	1	0	1.749785	-2.103114	1.204702
39	1	0	-0.102773	-0.561025	1.431742
40	1	0	-0.796865	-0.257535	-0.941994
41	1	0	-1.422268	-0.070640	-1.918440
43	1	0	-3.020763	-1.202269	-1.985435
44	1	õ	-1.958620	1.140022	1.082644
45	1	0	-2.957957	1.752976	-0.227361
46	1	0	4.313977	-0.236152	2.343583
47	1	0	4.507205	0.901734	0.987759
48	1	0	3.178962	1.833605	2.886905
49	1	0	-4.137532	-2.451090	2.011607
50	1	0	-5.813665	-1.900224	2.185849
52	1	0	1 906626	-0 535406	3 273142
53	1	0	-5.433209	-3.759828	0.479156
54	1	0	-6.329999	-2.374905	-0.115001
55	1	0	-4.790357	-2.973147	-1.862816
56	1	0	-3.447371	-3.180908	-0.724983
57	1	0	-6.728778	-0.584891	-0.707588
58	1	0	-6.536354	1.112558	-1.102873
59	1	0	-6.385517	0.534379	1.382449
6U 61	1	U	-3.0/4607	1.530111	U./4385/ _2 022051
01 62	⊥ 1	0	-4.34//39	-0.516578	-2.658731
63	9	0	-2.141823	-1.509069	0.717324
64	5	0	-3.155148	-0.533584	0.200664

Table S5. Optimized Cartesian coordinates of 10-F

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	9	0	2.242709	-2.423356	-1.978245
2	9	0	-0.958911	-1.417000	-3.675560
3	9	0	-3.420665	-2.243432	-4.380589
4	9	0	3.391175	-0.243722	2.107038
5	9	0	0.264411	2.056601	1.112721
6	9	0	3.892972	-4.457231	-1.340230
/	9	0	5.292450	-4.410337	2 722625
9	9	0	4 278856	0 998719	-1 231948
10	9	0	1.134696	4.589723	1.433909
11	9	0	3.562868	5.351115	0.424955
12	9	0	5.122621	3.541301	-0.909410
13	7	0	-4.355601	0.230476	1.016728
14	6	0	-3.306880	-1.273667	-3.443077
15	6	0	-2.031047	-0.843086	-3.071198
16	6	0	-2.982926	0.733534	-1.564522
17	6	0	-1.825652	0.165853	-2.115298
18	6	0	3.749481	-3.423//6	-0.496538
19	6	0	2.730805	-1.24//25	-1 750659
20	1	0	-0.410505	1 593506	-1 332344
22	1	0	0.188805	0.624421	-2.669326
23	6	0	2.890426	-2.365570	-0.795793
24	6	0	-3.147022	1.818019	-0.506172
25	1	0	-2.337609	2.561361	-0.490646
26	6	0	0.269225	-0.394785	-0.755466
27	1	0	0.194887	-1.424801	-1.132162
28	1	0	-0.312930	-0.404080	0.192147
29	6	0	-4.449876	-0.711166	-2.875821
30	Ĺ	0	-5.433952	-1.06/439	-3.185588
32	6	0	-1 266999	-1.202001	-1 9/16/2
32	6	0	2 231045	1 416691	-0 079742
34	6	0	-4.460560	-0.498858	2.205587
35	6	0	-5.293907	1.091102	-1.144720
36	1	0	-6.251674	1.225666	-1.668138
37	6	0	4.473932	-3.398659	0.699463
38	6	0	-5.568302	0.404599	0.208161
39	1	0	-6.335573	0.988419	0.759962
40	l	0	-5.997434	-0.589559	0.010381
41	6	0	4.342670	-2.312893	2 401416
42	1	0	-6 442027	-1 323097	1 801305
44	- 6	0	1.465324	2.389229	0.581344
45	6	0	-4.524865	2.403573	-0.884808
46	1	0	-4.967813	3.013047	-0.081833
47	1	0	-4.459918	3.012219	-1.798809
48	6	0	-3.259368	1.198436	0.901985
49	1	0	-2.317513	0.678315	1.133147
50	1	0	-3.366629	2.017182	1.644963
51	6	0	3.934514	3.164103	-0.412720
5Z	6	0	3.4/6994	1.8535/1 -2.051300	-0.560220
54	1	0	-6 572162	-2.652502	3 835870
55	6	0	-3.429848	-0.482616	3.179548
56	1	Ũ	-2.545714	0.137087	3.041721
57	- 6	0	3.138289	4.092640	0.264537
58	6	0	-4.641415	-2.046368	4.596544
59	1	0	-4.709537	-2.640176	5.509016
60	6	0	1.895158	3.702145	0.772681
61	6	0	-3.523378	-1.248555	4.342096
62	1	0	-2.704461	-1.208288	5.064136
63	5	0	1.737311	-0.070022	-0.290231

Table S6. Optimized Cartesian coordinates of 11

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	9	0	-2.624225	2.721620	0.450934
2	9	0	0.284947	4.175665	-0.475275
3	9	0	2.632843	5.438615	-0.766334
4	9	0	-4.004220	-1.768325	1.361852
5	9	0	0.040811	-2.686969	1.197230
6	9	0	-5.160211	3.530873	0.693888
7	9	0	-7.158470	1.736275	1.268843
8	9	0	-6.543466	-0.920718	1.597256
9	9	0	-2.8/4101	-0.40/448	-1.839518
11	9	0	-1 0/7399	-4.695313	-2 965988
12	9	0	-2.614229	-2.435152	-3.579303
13	7	0 0	4.379176	-0.267524	0.193368
14	6	0	2.590139	4.091665	-0.957085
15	6	0	1.369155	3.428629	-0.801486
16	6	0	2.410191	1.372054	-1.363735
17	6	0	1.232665	2.042531	-0.992899
18	6	0	-4.860148	2.218869	0.856137
19	6	0	-3.164910	0.423981	0.894361
20	6	0	-0.100392	1.352980	-0.813402
21	1	0	-0.130173	0.492858	-1.502424
22	l	0	-0.904883	2.03444/	-1.124186
23	6	0	-3.542843	-0 100926	-1 629/53
25	1	0	1 764315	-0.643630	-2 004638
2.6	6	0	-0.365402	0.863518	0.628834
27	1	0	-0.460403	1.736288	1.295846
28	1	0	0.529294	0.319465	0.984367
29	6	0	3.749425	3.409655	-1.323341
30	1	0	4.684620	3.959660	-1.444346
31	6	0	-4.228740	-0.440298	1.188920
32	6	0	3.633835	2.038442	-1.536117
33	6	0	-1.474606	-1.450230	-0.197108
34	6	0	4.847618	-0.767889	1.406726
35	6	0	4.690108	1.020441	-1.935328
30	1	0	5.486265 _5.979473	1 31/720	-2.5/131/
38	6	0	5 344273	0 389261	-0 691726
39	1	0	6.131121	-0.324380	-1.022669
40	1	0	5.850462	1.185139	-0.121498
41	6	0	-5.558549	-0.032679	1.316303
42	6	0	6.161080	-0.489214	1.868540
43	1	0	6.845158	0.104872	1.264997
44	6	0	-0.671299	-2.572001	0.046688
45	6	0	3.823148	-0.052820	-2.628098
46	1	0	4.340394	-1.019131	-2.742305
47	1	0	3.484284	0.290126	-3.617255
48	6	0	3.133290	-0.830895	-0.353995
49	1	0	2.349032	-0.749895	-0 579414
51	1	0	-1 977221	-2 490610	-2 38/293
52	6	0	-2 095024	-1 456292	-1 450801
53	6	0	6.609660	-0.965694	3.101258
54	1	0	7.626696	-0.721707	3.419450
55	6	0	4.033793	-1.581146	2.238241
56	1	0	3.023551	-1.849009	1.934944
57	6	0	-1.183716	-3.595618	-2.079990
58	6	0	5.788856	-1.746310	3.918730
59	1	0	6.145277	-2.116518	4.881508
60	6	0	-0.521839	-3.633236	-0.853305
61	6	0	4.499767	-2.046871	3.466388
62	1	0	3.833355	-2.660301	4.077269
63 C1	9	U	-1.4368/4	-0.095/54	2.240066
04	5	U	-1.002029	-0.10/304	0.901/82

Table S7. Optimized Cartesian coordinates of 11-F

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	5	0	-0.000110	-0.000075	0.000132
2	6	0	0.1829/2	1.558//6	0.000043
3	6	0	-0./33063	2.410996	0.660/51
4	6	0	1.2/1644	2.1/5222	-0.660844
5	6	0	-0.564169	3./9/040	0.6/6355
6	l	0	-1.584019	1.9/1213	1.186405
/	6	0	1.428709	3.562650	-0.6/6/22
8	l	0	1.997393	1.549963	-1.186372
9	6	0	0.514243	4.377209	-0.000258
10	1	0	-1.277318	4.428591	1.210995
11	1	0	2.268838	4.011533	-1.211480
12	1	0	0.641761	5.462093	-0.000380
13	6	0	-1.441627	-0.621009	0.000152
14	6	0	-2.519643	0.012695	-0.661867
15	6	0	-1.721857	-1.839669	0.662180
16	6	0	-3.799693	-0.545080	-0.677594
17	1	0	-2.340948	0.953211	-1.188501
18	6	0	-3.006650	-2.386435	0.677966
19	1	0	-0.915731	-2.356062	1.188815
20	6	0	-4.048113	-1.743510	0.000185
21	1	0	-4.608302	-0.042597	-1.213265
22	1	0	-3.197129	-3.319196	1.213651
23	1	0	-5.051374	-2.175596	0.000225
24	6	0	1.258425	-0.937982	0.000140
25	6	0	2.453519	-0.571658	0.663104
26	6	0	1.249177	-2.187819	-0.662994
27	6	0	3.569609	-1.410715	0.678638
28	1	0	2.497176	0.384232	1.190567
29	6	0	2.372427	-3.017234	-0.678950
30	1	0	0.345607	-2.503015	-1.190308
31	6	0	3.534112	-2.633479	-0.000289
32	1	0	4.472348	-1.109613	1.214998
33	1	0	2.342024	-3.968277	-1.215488
34	1	0	4.410092	-3.286084	-0.000495

Table S8. Optimized Cartesian coordinates of BPh₃

Center	Atomic	Atomic		Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	5	0	-0.000253	-0.000274	0.735952	
2	9	0	1 526900	0.00016/	2.201820	
3	6	0	-1.520000	-0.340301	1 070011	
4	6	0	-2.401121	-1.030993	_1 033350	
5	0	0	-2.041340	-1 403764	-1.033339	
7	1	0	-2 0/17/7	-1 333076	2 075019	
, 8	6	0	-3 337658	-0 337398	-1 /37662	
9	1	0	-1 /16252	0.591/25	-1 716710	
10	6	0	-4 177506	-1 049111	-0 574542	
11	1	0	-4 347809	-1 954365	1 383910	
12	1	0	-3 698089	-0 040113	-2 427854	
13	1	0	-5.192476	-1.317001	-0.882172	
14	- 6	0	0 463152	1 494624	0 229598	
15	6	0	1.027424	1.763321	-1.033967	
16	6	0	0.283872	2,607259	1.078505	
17	6	0	1.376981	3.058366	-1.438206	
18	1	0	1.221323	0.929967	-1.717220	
19	6	0	0.633123	3.905972	0.691939	
20	1	0	-0.135745	2.434012	2.073339	
21	6	0	1.179658	4.141664	-0.575430	
22	1	0	1.815293	3.221823	-2.428122	
23	1	0	0.479103	4.741943	1.382383	
24	1	0	1.455099	5.154611	-0.883052	
25	6	0	1.062893	-1.149079	0.230189	
26	6	0	2.117899	-1.547134	1.078272	
27	6	0	1.012357	-1.774507	-1.032097	
28	6	0	3.068687	-2.498376	0.692044	
29	1	0	2.178414	-1.095251	2.072214	
30	6	0	1.959862	-2.724163	-1.436064	
31	1	0	0.192347	-1.527979	-1.714524	
32	6	0	2.998478	-3.091908	-0.574163	
33	1	0	3.871090	-2.780629	1.381803	
34	1	0	1.881466	-3.187327	-2.425056	
35	1	0	3.738599	-3.836420	-0.881547	

Table S9. Optimized Cartesian coordinates of BPh₃-F

Figure S35. Depictions of HOMO (left) and LUMO (right) of **11**

References

 Hansen, M. C.; Buchwald, S. L., A Method for the Asymmetric Hydrosilylation of N-Aryl Imines. *Organic Letters* **2000**, *2* (5), 713-715.
Nicasio, J. A.; Steinberg, S.; Ines, B.; Alcarazo, M., Tuning the Lewis acidity of boranes in frustrated Lewis pair chemistry: implications for the

hydrogenation of electron-poor alkenes. *Chemistry – A European Journal* **2013**, *19* (33), 11016-20.

3. Parks, D. J.; Piers, W. E.; Yap, G. P. A., Synthesis, Properties, and Hydroboration Activity of the Highly Electrophilic Borane Bis(pentafluorophenyl)borane, HB(C6F5)21. *Organometallics* **1998**, *17* (25), 5492-5503.

4. Beckett, M. A.; Strickland, G. C.; Holland, J. R.; Sukumar Varma, K., A convenient n.m.r. method for the measurement of Lewis acidity at boron centres: correlation of reaction rates of Lewis acid initiated epoxide polymerizations with Lewis acidity. *Polymer* **1996**, *37* (20), 4629-4631.