Supporting Information

Diaqua- β -Octaferrocenyltetraphenylporphyrin: A Multiredoxactive and Air-stable 16 π Non-Aromat

Rasha K. Al-Shewiki,[†] Marcus Korb,[†] Alexander Hildebrandt,[†] Stefan Zahn,[‡] Sergej Naumov,[‡] Roy Buschbeck,[†] Tobias Rüffer,^{*†} and Heinrich Lang[†]

[†]Inorganic Chemistry Department, Chemnitz University of Technology, Strasse der Nationen 62, Chemnitz 09107, Germany.

[‡]Chemical Department, Leibniz Institute of Surface Modification (IOM), Permoserstrasse 15, 04318 Leipzig, Germany.

E-mail: tobias.rueffer@chemie.tu-chemnitz.de

Table of Contents

1.	Experimental Details	S3
	1.1 General Information	S3
	1.2 Synthesis and Analytical Data of H ₂ TPP and CuTPP	S3-S4
	1.3 Synthesis and Analytical Data of CuTPPBr8 CHCl3 and {TPPFc8(H2O)2}	S5-S6
	1.4 Purification of CuTPPBr ₈ CHCl ₃ and {TPPFc ₈ (H ₂ O) ₂ }	S7
	1.4.1 Comments to the synthesis and isolation of {TPPFc ₈ (H ₂ O) ₂ }	S8-S9
	1.5 ¹ H and ¹³ C NMR spectra of H_2TPP	S10
	1.6 HR-ESI-TOF-MS and IR spectra of H ₂ TPP.	S11
	1.7 HR-ESI-TOF-MS and IR spectra of CuTPP	S12
	1.8 HR-ESI-TOF-MS and IR spectra of CuTPPBr ₈ ·CHCl ₃	S13
	1.9 HR-ESI-TOF-MS and IR spectra of {TPPFc ₈ (H ₂ O) ₂ }	S14
2.	UV-vis absorption spectra.	S15
	2.1 Concentration dependent UV-vis spectra and data of H ₂ TPP	S15
	2.2 Concentration dependent UV-vis spectra and data of CuTPP	S16
	2.3 Concentration dependent UV-vis spectra and data of CuTPPBr ₈ ·CHCl ₃	S17
	2.4 Concentration dependent UV-vis spectra and data of {TPPFc ₈ (H ₂ O) ₂ }	S18
3.	Electrochemical Measurements	S19-S21
4.	Selected antiaromatic 16π tetraphenylporphyrins	S22
5.	Crystallography	S22
	5.1 Experimental Details.	S22-S23
	5.2 Structural Data of CuTPPBr ₈ ·2CH ₂ Cl ₂ and {TPPFc ₈ (H ₂ O) ₂ }·5CH ₂ Cl ₂	S23-S28
	5.3 β -2,3,7,8,12,13,17,18-Octabromo-meso-5,10,15,20-tetraphenyl(metallo) porphyrins (H ₂ TArylBr ₈ /	S29-S32
	MTArylBr ₈)	
6.	Computational Details	S32
7.	References	S32-S34

Experimental Details

1.1 General Information

The Negishi *C,C* cross-coupling reactions were carried out under an atmosphere of argon using standard Schlenk techniques. Tetrahydrofuran (THF) was purified before use by distillation from sodium/benzophenone ketyl,¹ while, dichloromethane (CH_2Cl_2) was dried with an MBraun MB SPS-800 system (double column solvent filtration, working pressure 0.5 bar) and further purified by distillation from calcium hydride.¹

¹H and ¹³C NMR spectra were recorded at ambient temperature with a Bruker Avance III 500 Ultra Shield Spectrometer in the Fourier transform mode. The spectra were recorded at 500.300 MHz (¹H) and 125.813 MHz (¹³C), respectively. The chemical shifts (δ) are given in parts per million (ppm), and for referencing, the solvent signals were used (CDCl₃: 7.26 ppm (¹H), 77.16 ppm (¹³C). Fourier transform infrared spectroscopy (FTIR) studies in solid state using KBr disc were performed in the range of 400–4000 cm⁻¹ with a Perkin-Elmer 1000 FTIR spectrometer. Elemental analyses (C,H and N) were performed using a Thermo FlashAE 1112 series analyzer. High-resolution electrospray ionization mass spectrometry (HR-ESI-TOF-MS) were recorded with a Bruker micrOTOF QII spectrometer equipped with an Apollo II ESI source. Ultraviolet-visible absorption spectra were recorded using a Spectronic GENESYS 6 UV-vis spectrophotometer (Thermo Electron Corporation) between 200–800 nm. Single crystal X-ray diffraction analyses were performed with an Oxford Gemini S diffractometer.

meso-5,10,15,20-Tetraphenylporphyrin (H_2TPP) ,² copper(II)-5,10,15,20-tetraphenylporphyrin (CuTPP),³ [ZnCl₂·2thf],⁴ [N(*n*Bu)₄][B(C₆F₅)₄],⁵ and [P(*t*Bu)₂C(CH₃)₂CH₂Pd(μ -Cl)]₂⁶ were prepared according to published procedures. Other chemicals were purchased from commercial suppliers and used without further purification. Aluminium oxide (Alumina: 90 neutral with activity grade of 1, particle size 50–200 µm and specific surface (BET) \approx 130 m2/g) for column chromatography was purchased from MACHEREY-NAGEL GmbH & Co. KG; Germany. While preparative silica gel plates (silica gel G, 20 × 20 cm, 500 µm, Analtech uniplate) were bought from Sigma-Aldrich.

1.2 Synthesis and Analytical Data of H₂TPP and CuTPP

Scheme S1. Synthesis of H₂TPP and CuTPP.

Synthesis of meso-5,10,15,20-tetraphenylporphyrin, H₂TPP

According to reference (2), to a solution of benzaldehyde (6.641 g, 72 mmol) in propionic acid (300 mL), freshly distilled pyrrole (5.00 mL, 72 mmol) was added, and the reaction mixture was heated to reflux for 30 min. After cooling it to ambient temperature, the purple precipitate was filtered off and washed with hot distilled water (5 \times 100 mL) followed by MeOH (3 \times 30 mL). The product was then dried in an oven at 100 °C for 5 h and used without any further purification. Yield: 1.92 g (3.13 mmol, 20% based on benzaldehyde).

Analytical Data of H₂TPP

Elemental analysis (%) for $C_{44}H_{30}N_4$ (614.74 g/mol) calcd: C, 85.97; H, 4.92; N, 9.11; found: C, 85.63; H, 4.95; N, 9.05. ¹H NMR (CDCl₃): δ ppm: -2.75 (s, 2H, N–*H*, H^{a,a'}), 7.73–7.78 (m, 12H, *m*- and *p*-Ph–*H*, H^{1,2,2'}), 8.21–8.23 (m, 8H, *o*-Ph–*H*, H^{3,3'}), 8.85 (s, 8H, β -pyrrolic–*H*, H^{7,7'}). ¹³C NMR (CDCl₃) δ ppm: 120.3 (C⁵), 126.8 (C^{2,2'}), 127.9 (C¹), 131.2 (br, C^{7,7'}), 134.7 (C^{3,3'}), 142.4 (C⁴).⁷ IR (KBr, *v*, cm⁻¹): 3317 (m, *v*_{N-H}), 3054/3024 (m/m, *v*_{=C-H}),⁸ 1596 (m), 1558 (w), 1491 (w), 1472 (m), 1441 (m), 1400 (w), 1350 (m), 1286 (w), 1251 (w), 1220 (m), 1176 (m), 1155 (w), 1071 (m), 1053 (w), 1031 (w), 1001 (m), 980 (m), 965 (s), 876 (w), 846 (w), 800 (s), 729 (s), 701 (s), 657 (m), 639 (w), 559 (w), 518 (w). HRMS (ESI-TOF): *m/z* calcd for: $C_{44}H_{31}N_4$, 615.2543 [M+H]⁺; found: 615.2657. UV-vis (in CH₂Cl₂) λ_{abs} [nm] (ε M⁻¹cm⁻¹) (at c = 2.1147.10⁻⁶ M): 417 (\approx 426579), 514 (\approx 16218), 549 (\approx 6606), 589 (\approx 4466) and 645 (\approx 4073).⁹ (See Figures S1, S2, S3 and S10 for ¹H, ¹³C NMR, HR-ESI-TOF-MS, IR and UV-vis spectra of H₂TPP, respectively).

Synthesis of meso-5,10,15,20-tetraphenylporphyrinato-copper(II), CuTPP

To a solution of H_2TPP (1.00 g, 1.6 mmol) in CHCl₃ (200 mL), a solution of Cu(OAc)₂·H₂O (1.62 g, 8.1 mmol) in MeOH (100 mL) was added in a single portion and the reaction mixture was heated to reflux for a 6 h. After cooling it to ambient temperature, the reaction mixture was transferred to a separatory funnel and washed thoroughly with a brine solution and distilled water to remove the excess of copper acetate. The organic phase was then dried over MgSO₄ and all the volatiles were removed with a rotary evaporator. The purple solid of CuTPP was dried in an oven at 100 °C for 5 h and used without further purification. Yield: 0.96 g (1.42 mmol, 87% based on H₂TPP).

Analytical Data of CuTPP

Elemental analysis (%) for C₄₄H₂₈CuN₄ (676.27 g/mol) calcd: C, 78.15; H, 4.17; N, 8.28; found: C, 78.36; H, 4.45; N, 8.34. IR (KBr, v, cm⁻¹): 3054/3024 (m/w, $v_{=C-H}$), 1598 (m), 1576 (w), 1535 (w), 1516 (w), 1489 (m), 1441 (m), 1371 (w) 1345 (s), 1308 (w), 1206 (m), 1177 (m), 1157 (w), 1072 (m), 1005 (s), 835 (w), 795 (s), 743 (m), 699 (s), 661 (w), 523 (w). HRMS (ESI-TOF): *m/z* calcd for: C₄₄H₂₈CuN₄/C₄₄H₂₉CuN₄/C₄₄H₂₈CuKN₄/C₈₈H₅₇Cu₂N₈/C₈₈H₅₆Cu₂N₈Na/C₈₈H₅₆CuKN₈, 675.1604 [M]⁺/676.1683 [M+H]⁺/714.1242 [M+K]⁺/1351.3273 [2M+H]⁺/1373.3152 [2M+Na]⁺/1389.2951 [2M+K]⁺, found: 675.1600 / 676.1669 / 714.1248 / 1351.3204 / 1373.3122 / 1389.2953. UV-vis (in CH₂Cl₂) λ_{abs} [nm] (ε M⁻¹cm⁻¹) (at c = 3.1053.10⁻⁶ M): 415 (\approx 331131), 539 (\approx 13183) and 617 (\approx 1000).¹⁰ (See Figures S4, S5 and S11 for HR-ESI-TOF-MS, IR and UV-vis spectra of **CuTPP**, respectively).

1.3 Synthesis and Analytical Data of CuTPPBr₈·CHCl₃ and {TPPFc₈(H₂O)₂}

Synthesis of β-2,3,7,8,12,13,17,18-octabromo-meso-5,10,15,20-tetraphenylporphyrinato-copper(II), CuTPPBr8·CHCl3

To a solution of **CuTPP** (0.80 g, 1.18 mmol) in CHCl₃ (100 mL), N-bromosuccinamide (10.00 g, 56.19 mmol) was added in a single portion and the reaction mixture was heated at reflux for 16 h. Afterward, a further amount of N-bromosuccinamide (3.00 g, 16.86 mmol) was added and the reaction mixture was heated at reflux for 24 h. After that, alumina (\approx 4 g) was added and all volatiles were removed under reduced pressure (**Crude-1**). The obtained residue was loaded on an alumina column (3 × 25 cm) for purification (see Scheme S2). Pure **CuTPPBr**₈ in form of the adduct **CuTPPBr**₈·CHCl₃ was obtained as a deep-green solid in a yield of 1.1-1.3 g (0.77–0.91 mmol, 65–77%, based on **CuTPP**).

Analytical Data of CuTPPBr₈·CHCl₃

Elemental analysis (%) for C₄₄H₂₀Br₈CuN₄·CHCl₃ (1426.81 g/mol) calcd: C 37.88, H 1.48, N 3.93; found: C 37.97, H 1.45, N 3.96. IR (KBr, v, cm⁻¹): 3054/3021 (w/w, $v_{=C-H}$), 1442 (w), 1408 (w), 1319 (m), 1244 (w), 1178 (w), 1156 (w), 1065 (w), 1039 (m), 1023 (s), 923 (m), 838 (w), 752 (m), 734 (m), 695 (m), 656 (w). HRMS (ESI-TOF): m/z calcd for: C₄₄H₂₁Br₈CuN₄/C₈₈H₄₁Br₁₆Cu₂N₈/C₈₈H₄₀Br₁₆Cu₂KN₈, 1307.4438 [M+H]⁺ /2615.8822 [2M+H]⁺/2653.8381 [2M+K]⁺, found: 1307.4449/2615.8720/2653.8469. UV-vis (in CH₂Cl₂) λ_{abs} [nm] (ε M⁻¹cm⁻¹) (at c = 8.7959.10⁻⁶ M): 446 (sh) (\approx 128825), 465 (\approx 144544), 581(\approx 17783) and 624 (\approx 6607).¹¹ (See Figures S6, S7 and S12 for HR-ESI-TOF-MS, IR and UV-vis spectra of CuTPPBr₈·CHCl₃, respectively).

Synthesis of diaquo-β-2,3,7,8,12,13,17,18-octaferrocenyl-meso-5,10,15,20-tetraphenylporphyrin, {TPPFc₈(H₂O)₂}

To a solution of ferrocene (0.9107 g, 4.89 mmol) and KOrBu (0.0547 g, 0.49 mmol) in anhydrous THF (100 mL) at -78 °C, *r*BuLi (3.90 mL, 1.9 M in n-pentane) was added dropwise *via* a syringe within 5 min. The reaction mixture was stirred for 1 h at -78 °C. After that, the reaction mixture was warmed to -50 °C and [ZnCl₂·2thf] (2.20 g, 7.83 mmol) was added in a single portion and the reaction mixture was stirred at -50 °C for 1 h. Then it was allowed to warm to ambient temperature and stirring was continued for 1 h. Afterward, **CuTPPBr**₈·CHCl₃ (0.200 g, 0.140 mmol) and [P(*r*Bu)₂C(CH₃)₂CH₂Pd(μ -Cl)]₂ (0.0423 g, 0.0616 mmol) were added in single portions. The flask was closed and under solvothermal reaction conditions it was heated to 95 °C for 24 h. A second portion of [P(*r*Bu)₂C(CH₃)₂CH₂Pd(μ -Cl)]₂ (0.0347 g, 0.0505 mmol) was added after cooling down to ambient temperature and the solvothermal heating was repeated as above. After cooling down to ambient temperature all volatiles were removed under reduced pressure, and the crude product (**Crude-2**) was worked up by column chromatography (column-size: 3×10 cm, alumina). The 1st fraction contained unreacted ferrocene which was isolated using n-hexane as eluent, while the 2nd fraction using CH₂Cl₂ as eluent, contained the title compound **TPPFc**₈ contaminated with *hepta*-ferrocenylated **H**₂**TPPFc**₇. After performing a thin layer chromatography (preparative silica gel layer, 20 × 20 cm, 500 microns) using CH₂Cl₂ as eluent, **TPPFc**₈ could be isolated after evaporation of the solvent in form of {**TPPFc**₈(H₂O)₂} as a green solid in yields between 26 to 32 mg (9–11%, based on **CuTPPBr**₈·CHCl₃). The synthesis and purification procedure to obtain **CuTPPBr**₈·CHCl₃ and {**TPPFc**₈(**H**₂**O**₂} in a pure state is summarized in Scheme S2.

Analytical Data of {TPPFc₈(H₂O)₂}

IR (KBr, v, cm⁻¹): 3090 (w, $v_{=C-H}$), 2957 (w), 2923 (m), 2852 (w), 1661 (w), 1640 (w), 1469 (w), 1444 (w), 1412 (w), 1386 (w), 1333 (w), 1307 (w), 1260 (m), 1237 (w), 1197 (w), 1105/1003 (m/m),¹² 938 (m), 857 (w), 814 (s, γ_{Fc-H} , out of plane bending vibration), 738 (m), 693 (m), 596 (w). HRMS (ESI-TOF): m/z calcd for: C₁₂₄H₉₃Fe₈N₄/C₁₂₄H₉₇Fe₈N₄O₂/C₁₂₅H₉₅Cl₂Fe₈N₄Na, 2086.2238 [M+H]^{+/} 2122.2449 [M+2H₂O+H]^{+/}2193.1571 [M+CH₂Cl₂+Na+H]⁺; found: 2086.2255/2122.1903/2193.1147. UV-vis (in CH₂Cl₂) λ_{abs} [nm] (ε M⁻¹cm⁻¹) (at c = 4.9644.10⁻⁶ M): 230 (\approx 263027), 362 (\approx 117489) (See Figures S8, S9 and S13 for HR-ESI-TOF-MS, IR and UV-vis spectra of {**TPPFc₈(H₂O)₂**}, respectively).

1.4 Purification of CuTPPBr₈·CHCl₃ and {TPPFc₈(H₂O)₂}

Scheme S2. Synthesis and purification of **CuTPPBr**₈·CHCl₃ and {**TPPFc**₈(**H**₂**O**)**2**}: *i*) N-bromosuccinamide, CHCl₃, reflux 40 h, *ii*) 1st: Ferrocene, KOtBu, THF, tBuLi, -78 °C, 1 h; 2nd: [ZnCl₂·2thf], -50 °C, 1 h, 25 °C, 1 h; 3rd: [[P(tBu)₂C(CH₃)₂CH₂Pd(μ -Cl)]₂], 95 °C, 48 h. The HR-ESI-TOF-MS spectra refer to the obtained mixture of **H**₂**TPPFc**₇ and **TPPFc**₈ (right), and pure {**TPPFc**₈(**H**₂**O**)₂} after additional purification (left).

1.4.1 Comments to the synthesis and isolation of {TPPFc₈(H₂O)₂}

After column chromatography of **Crude-2** with CH_2Cl_2 , green fractions were obtained of which ESI-TOF-MS measurements revealed the formation/presence of both H_2TPPFc_7 and $TPPFc_8$ (Scheme 2). According to the ESI-TOF-MS spectra displayed in Scheme 2 and below in Scheme S2a we attribute H_2TPPFc_7 to a 18π porphyrin, although we could not isolate sufficient material for further analysis. At that stage $TPPFc_8$ is obviously free of water, as the before-mentioned ESI-TOF-MS measurements did never reveal the presence of water. However, after the preparative thin layer chromatography and all required manipulations performed under aerobic working conditions the ESI-TOF-MS measurements reveal the presence of two water molecules. The presence and the nature of interaction of these two water molecules was (further) confirmed by a single crystal X-ray crystallographic study. Due to this we assigned the title compound as {TPPFc_8(H_2O)_2}. For all analytical measurements crystals of {TPPFc_8(H_2O)_2} were used.

The conversion of **CuTPPBr**₈ to {**TPPFc**₈(**H**₂**O**)₂} was performed under anaerobic working conditions. The intense dark-green colour of the reaction solution observed after the addition of **CuTPPBr**₈ modified by time to green only. After the end of the reaction and evaporation of all volatiles a green solid was obtained. All subsequent operations were performed under air and/or in CH₂Cl₂ solutions, whereby no further colour changes could be noticed. Furthermore, {**TPPFc**₈(**H**₂**O**)₂} was crystallized out of CH₂Cl₂:DMF (v:v = 40:1) solutions against n-hexane in a closed system but under aerobic conditions. By time CH₂Cl₂ did slowly evaporate and due to the complete crystallization of {**TPPFc**₈(**H**₂**O**)₂} the CH₂Cl₂ became colourless. Under the microscope we exclusively observed the formation of purple plates. These observations and the in Chapter 2.4 (see below) reported UV-vis measurements of {**TPPFc**₈(**H**₂**O**)₂} demonstrate that this compound is not air and/or moisture sensitive, as reported for 16π OiPTPP.²⁰ In addition, these observations tells that the low yield of {**TPPFc**₈(**H**₂**O**)₂} is not due to a (partial) decomposition during the aerobic work-up.

The question arises why the 16π **TPPFc**₈ was formed out of **CuTPPBr**₈ during a Negishi *C*, *C* cross coupling. So far, 16π porphyrins were synthesized by the addition of SbCl₅ as oxidizing agent to CH₂Cl₂ solutions of 18π porphyrins.^{20 and references therein} The question is thus, which chemical species acted as an oxidizing agent in the here reported case. The situation is further complicated as in due course of our reaction –Br substituents were replaced by Ferrocenyl groups. In order to oxidize first and to substitute –Br vs –Fc second, we tried to oxidize **CuTPPBr**₈ with SbCl₅ in CH₂Cl₂ solutions, according to reference.²⁰ In such cases we observed the precipitation of insoluble and black-coloured material only. It remains speculative whether [P(*t*Bu)₂C(CH₃)₂CH₂Pd(μ -Cl)]₂ might be responsible for both the –Br vs –Fc substitution and the oxidation. With the catalyst itself we have good experiences and could describe several times its applicability for Negishi *C*, *C* cross couplings.¹³⁻¹⁵ By reducing the amount of the catalyst to the half and less in the here reported case we did observe the formation of 16π **TPPFc**₈, while doubling its amount did not give rise to higher yields of 16π **TPPFc**₈.

We can thus not answer this final question but aim to indicate that we investigating the reaction of other 18π and octabromoporphyrins with different catalysts for *C*,*C* cross coupling reactions.

Scheme S2a. HR-ESI-TOF-MS spectrum of H_2TPPFc_7 (Black: measured in CH_2Cl_2 as part of the green fraction reported in Scheme 2, red: calculated).

Figure S1. ¹H (above) and ¹³C NMR spectra (below) of H₂TPP in CDCl₃
According to Manke et al.¹⁶ the ¹³C NMR resonances of pyrrole carbon atoms are not observable.

1.6 HR-ESI-TOF-MS and IR spectra of H₂TPP

Figure S2. HR-ESI-TOF-MS spectrum of H₂TPP (black: measured in (CH₂Cl₂/CH₃CN), red: calculated).

Figure S3. IR spectrum (KBr) of H₂TPP.

1.7 HR-ESI-TOF-MS and IR spectra of CuTPP

Figure S4. HR-ESI-TOF-MS spectrum of CuTPP (black: measured in (CH₂Cl₂/CH₃CN), red: calculated).

Figure S5. IR spectrum (KBr) of CuTPP.

1.8 HR-ESI-TOF-MS and IR spectra of CuTPPBr₈·CHCl₃

Figure S6. HR-ESI-TOF-MS spectrum of $CuTPPBr_8$ ·CHCl₃ (black: measured in (CH₂Cl₂/CH₃CN), red, orange and purple: calculated).

Figure S7. IR spectrum (KBr) of CuTPPBr₈·CHCl₃.

Figure S8. HR-ESI-TOF-MS spectrum of {TPPFc₈(H₂O)₂} (black: measured in (CH₂Cl₂/CH₃CN), red, green and blue: calculated).

Figure S9. IR spectrum (KBr) of {**TPPFc**₈(**H**₂**O**)₂}. According to the 1100 and 1000 cm⁻¹ rule of Rosenblum,¹² both bands are observed in the IR spectra of ferrocene derivatives when one of the Cp (η^5 -C₅H₅) rings is unsubstituted. This IR spectrum was measured out of isolated single crystals obtained by the diffusion controlled crystallization of CH₂Cl₂\DMF (v:v = 40:1) solution against n-hexane. Crystals were isolated by filtration and washed with n-hexane (2 × 3 mL) and dried in vacuo. Despite this, the IR spectrum display remaining amounts of CH₂Cl₂ as packing solvent and DMF adsorbed at the crystals surface.

2. UV-vis absorption spectra

2.1 Concentration dependent UV-vis spectra of H₂TPP

Figure S10. UV-vis spectrum of H₂TPP in CH₂Cl₂ (inserts is corresponding to the enlarged spectral range of 500–800 nm).

	Absor	Absorption λ_{max} [nm] log (ϵ [M ⁻¹ cm ⁻¹])					
	Soret (B) Ba	ınd	Q B	ands			
	1	2	3	4	5		
$C1 = 5.2868.10^{-6}$	417	514	549	589	645		
	(5.63)	(4.26)	(3.90)	(3.75)	(3.68)		
$C2 = 3.1721.10^{-6}$	417	514	549	589	645		
	(5.63)	(4.23)	(3.85)	(3.70)	(3.64)		
C3 = 2.1147.10 ⁻⁶	417	514	549	589	646		
	(5.63)	(4.21)	(3.82)	(3.65)	(3.61)		

Table S1. UV-vis data for H_2TPP in CH_2Cl_2

2.2 Concentration-dependent UV-vis spectra of CuTPP

Figure S11. UV-vis spectrum of CuTPP in CH₂Cl₂ (inserts is corresponding to the enlarged spectral range of 500–800 nm).

	Absorption λ_{max} [nm] log (ε [M ⁻¹ cm ⁻¹])					
	Soret (B) Ba	ınd	Q Bands			
	1	2	3			
$C1 = 7.7632.10^{-6}$	415	539	617			
	(5.56)	(4.26)	(3.13)			
$C2 = 6.2106.10^{-6}$	415	539	617			
	(5.54)	(4.16)	(3.01)			
$C3 = 3.1053.10^{-6}$	415	539	617			
	(5.52)	(4.12)	(3.00)			

Table S2. UV-vis data for CuTPP in CH₂Cl₂

2.3 Concentration dependent UV-vis spectra of CuTPPBr₈·CHCl₃

Figure S12. UV-vis spectrum of $CuTPPBr_8$ ·CHCl₃ in CH₂Cl₂ (inserts is corresponding to the enlarged spectral range of 500–800 nm).

	Absorption λ_{max} [nm] log (ε [M ⁻¹ cm ⁻¹])					
	Soret (B	B) Band	Q B	ands		
-	1	2	3	4		
$C1 = 1.7592.10^{-5}$	446(sh)	465	581	624		
	(5.11)	(5.16)	(4.26)	(3.83)		
$C2 = 8.7959.10^{-6}$	446(sh)	465	581	624		
	(5.11)	(5.16)	(4.25)	(3.82)		
C3 = 4.3979.10 ⁻⁶	446(sh)	465	581	624		
	(5.12)	(5.16)	(4.26)	(3.83)		

Table S3. UV-vis data for CuTPPBr₈ CHCl₃ in CH₂Cl₂

2.4 Concentration-dependent UV-vis spectra of {TPPFc₈(H₂O)₂}

Figure S13. UV-vis spectrum of $\{TPPFc_8(H_2O)_2\}$ in CH₂Cl₂ (insert is corresponding to the enlarged spectral range of 490–800 nm).

<u>Comment:</u> In order to analyze the absorptions No. 3 and 4 reliable, the UV-vis measurements were started with a comparatively high concentration. For this initial concentration we do not give λ and ε values for the absorption No. 1 as the absorbance exceeds 3.0. All operations were performed under aerobic conditions, incl. the dilution of the original higher concentrated solution. These measurements took about 3 h. As the features of the UV-vis spectra did not change within this time-window we can rule out that this compound is not air and/or moisture sensitive.

	Absorption λ_{max} [nm] log (ϵ [M ⁻¹ cm ⁻¹])				
-	1	2	3	4	
$C1 = 1.1032.10^{-5}$	-	362 (5.13)	529 (4.60)	597 (3.62)	
$C2 = 7.1708.10^{-6}$	230 (5.44)	362 (5.06)	-	-	
$C3 = 4.9644.10^{-6}$	230 (5.42)	362 (5.07)	-	-	
$C4 = 3.3096.10^{-6}$	230 (5.41)	362 (5.06)	-	-	

Table S4. UV-vis data for {TPPFc8(H2O)2} in CH2Cl2

3. Electrochemical Measurements

Figure S14. Set of cyclic voltammograms of {**TPPFc**₈(**H**₂**O**)₂} in CH₂Cl₂ (0.5 mmol·L⁻¹) at rising potential to +1000 mV (vs. FcH/FcH⁺) at 25 °C, supporting electrolyte 0.1 mol·L⁻¹ [N(nBu)₄][B(C₆F₅)₄], platinum working electrode. Decamethyl ferrocene was used as an internal reference.

Figure S15. Cyclic voltammogram of {**TPPFc**₈(**H**₂**O**)₂} in CH₂Cl₂ (0.5 mmol·L⁻¹) at rising potential from -2500 mV to +1400 mV (vs. FcH/FcH⁺) at 25 °C, supporting electrolyte 0.1 mol·L⁻¹ [N(nBu)₄][B(C₆F₅)₄], platinum working electrode. Decamethyl ferrocene was used as an internal reference.

Figure S16. Set of cyclic voltammograms of {**TPPFc**₈(**H**₂**O**)₂} in CH₂Cl₂ (0.5 mmol·L⁻¹) in the range of -1200 to -2700 mV (vs. FcH/FcH⁺) at 25 °C, supporting electrolyte 0.1 mol·L⁻¹ [N(*n*Bu)₄][B(C₆F₅)₄], platinum working electrode. Decamethyl ferrocene was used as an internal reference.

Figure S17. Cyclic voltammogram of {**TPPFc**₈(**H**₂**O**)₂} in CH₂Cl₂ (0.5 mmol·L⁻¹) at rising potential to +1400 mV (vs. FcH/FcH⁺) at 25 °C, supporting electrolyte 0.1 mol·L⁻¹ [N(nBu)₄][B(C₆F₅)₄], Carbon working electrode. Decamethyl ferrocene was used as an internal reference.

Figure S18. Square wave voltammogram of {**TPPFc**₈(**H**₂**O**)₂} in CH₂Cl₂ (0.5 mmol·L⁻¹) at rising potential to +1400 mV (vs. FcH/FcH⁺) at 25 °C, supporting electrolyte 0.1 mol·L⁻¹ [N(nBu)₄][B(C₆F₅)₄], Carbon working electrode. Decamethyl ferrocene was used as an internal reference. (step-height: 25 mV; pulse-width: 2 s; amplitude: 2 mV).

Figure S19. Set of cyclic voltammograms of {**TPPFc**₈(**H**₂**O**)₂} in CH₂Cl₂ (0.5 mmol·L⁻¹) at rising potential to +1400 mV (vs. FcH/FcH⁺) at 25 °C, supporting electrolyte 0.1 mol·L⁻¹ [N(nBu)₄][B(C₆F₅)₄], carbon working electrode. Decamethyl ferrocene was used as an internal reference.

4. Selected antiaromatic 16π tetraphenylporphyrins

OETPP¹⁷

TPP (+LiBF₄)¹⁸

Ph-NNiBuiBu Ph iBu

OiBTPP¹⁹

Ph

iBu

·iBu

iBu

iBu

OiPTPP 20

Compound	λ_{max}	Log <i>e</i>
[Li(TPP)] ⁺ [BF4] ⁻	332 / 394	-
OETPP	275 / 339	4.52 / 4.78
OiBTPP	274/330.5	-
OiPTPP	280 / 330	4.52 / 4.76

Scheme S3. Chemical structures of selected antiaromatic 16π tetraphenylporphyrins and UV-vis data of CH₂Cl₂ solutions of them.

5. Crystallography

5.1 Experimental details

All data were collected with an Rigaku Oxford Gemini S diffractometer. For data collection, cell refinement and data reduction the software CrysAlisPro was used.²¹ All structures were solved by direct methods with SHELXS-2013 and refined by full-matrix least-squares procedures on F2 using SHELXL-2013.²² All non-hydrogen atoms were refined anisotropically. All C-bonded hydrogen atoms were refined by a riding model. The positions of O-bonded hydrogen atoms were taken from the difference Fourier map and refined isotropically with appropriate restraints.

Crystals of $CuTPPBr_8$ were obtained by slow evaporation of a dichloromethane solution which was placed in a test tube in a closed vessel containing n-hexane. The colour of the crystals appeared as green and they were all well-shaped in form of octahedrons, although their size was rather tiny (max. dimension 0.05 mm). The asymmetric unit comprises half of a dichloromethane packing solvent, which is statistically disordered along a four-fold screw-axis and which is further dynamically disordered. The occupation factor was finally adjusted to each 0.5 and a composition of $CuTPPBr_8$ ·2CH₂Cl₂ was revealed.

Crystals of **TPPFc**₈ were obtained by slow evaporation of a dichloromethane solution including a little amount of dimethylformamide (ratio $CH_2Cl_2:DMF = 40:1$ (v:v)), which was placed in a test tube in a closed vessel containing n-hexane. Upon time CH_2Cl_2 did evaporate (partially) into the n-hexane and the mother liquor did decolour. Exclusively purple coloured and plate-like crystals were observed, which were rapidly losing their packing solvent once take from the mother liquor. Furthermore, these plate-like crystals appeared as the superposition of at least two very thin plates, which could not be separated from each other. The

dichloromethane packing solvents were refined as follows: Two of them (C1CC, Cl1, Cl2 and C4CC, Cl7, Cl8) were refined fully occupied and not disordered. Another two of them (C2CC, Cl3, Cl4 and C6CC, Cl11, Cl12) were refined fully occupied but disordered with split occupancies of 0.77/0.23 and 0.47/0.53, respectively. Another two of them (C3CC, Cl5, Cl6 and C5CC, Cl9, Cl10) were refined with an occupation factor of 0.5 and dynamic disorder with split occupancies of 0.29/0.71 and 0.24/0.76, respectively. At the final stage of the refinement the commands TWIN and BASF were used in order to refine the data as those of an inversion twin. As result a well-defined Flack x parameter of 0.454(8) was obtained. The crystallographic characterization thus revealed the composition of the single crystals as {**TPPFc**₈(**H**₂**O**)₂}·5CH₂Cl₂.

5.2 Structural Data of CuTPPBr₈·2CH₂Cl₂ and {TPPFc₈(H₂O)₂}·5CH₂Cl₂

Compound	CuTPPBr ₈ ·2CH ₂ Cl ₂	TPPFc ₈ ·5CH ₂ Cl ₂ ·2H ₂ O
Empirical Formula	$C_{46}H_{24}Br_8C_{14}CuN_4$	C ₁₂₉ H ₁₀₆ Cl ₁₀ Fe ₈ N ₄ O ₂
Temperature (K)	116	110
Formula mass (g/mol)	1477.31	2545.47
Radiation	Cu Ka	Cu Ka
Wavelength (Å)	1.54184	1.54184
Crystal system	tetragonal	monoclinic
Space group	<i>I4</i> ₁ /a	$P2_1$
<i>a</i> (Å)	20.6006(8)	15.1184(3)
<i>b</i> (Å)	20.6006(8)	23.6167(6)
<i>c</i> (Å)	10.1020(6)	15.6626(5)
α (°):	90.0	90.0
β (°):	90.0	92.824(2)
γ (°):	90.0	90.0
$V(Å^3)$	4287.1(4)	5585.5(3)
Ζ	4	2
D_{calc} (g/cm ³)	2.289	1.514
$\mu (\text{mm}^{-1})$	12.099	10.719
F(000)	2820	2604
$\theta_{\min} / \theta_{\max}$ (°)	6.503/62.896	3.743 / 63.994
Reflections collected	3190	17700
	$-19 \le h \le 19$	$-17 \le h \le 10$
Limiting indices	$-23 \le k \le 15$	$-27 \le k \le 25$
	$-15 \le l \le 3$	$-18 \le l \le 18$
Reflections unique	1674	12508
$R_{ m int}$	0.0293	0.0601
Reflections observed	1459	10254
$[I > 2\sigma(I)]$	1458	10234
Data/Restrains/Parameters	1674/8/154	12508/2232/1301
$R_1 / wR_2 [I > 2\sigma(I)]$	0.0461/ 0.1305	0.0862 / 0.2215
R_1 / wR_2 [all data]	0.0537/ 0.1350	0.1029 / 0.2405
Goodness-of-fit on F ²	1.075	0.999
Absolute structure		0.454(8)
parameter ²³	—	0.434(0)
Largest diff. peak/hole (eÅ ⁻³)	0.638 / -0.797	1.346 / -0.918

Table S5. Selected crystallographic and structural refinement data of CuTPPBr₈·2CH₂Cl₂ and {TPPFc₈(H₂O)₂}·5CH₂Cl₂

Figure S20. ORTEP (50 % probability ellipsoids) of the molecular structure of **CuTPPBr**₈·2CH₂Cl₂. All hydrogen atoms and packing solvent molecules were omitted for clarity. Symmetry codes: "A" = -x + 1, $-y + \frac{1}{2}$, z. "B" = $-y + \frac{3}{4}$, $x - \frac{1}{4}$, $-z - \frac{1}{4}$. "C" = $y + \frac{1}{4}$, $-x + \frac{3}{4}$, $-z - \frac{1}{4}$.

Figure S21. ORTEP (30 % probability ellipsoids) of the molecular structure of $\{TPPFc_8(H_2O)2\}$ ·5CH₂Cl₂. All carbon-bonded hydrogen atoms and packing solvent molecules were omitted for clarity. Of disordered atoms only one atomic position is displayed.

D–HA	D–H	HA	DA	D–H…A
O1-H5N2	0.99(10)	2.06(9)	3.013(14)	159(9)
O1–H6N4	1.00(9)	2.05(10)	3.014(14)	162(9)
O2–H7N3	0.98(11)	2.03(11)	2.963(14)	158(8)
O2-H8N1	0.95(9)	1.96(9)	2.893(14)	166(8)

Table S6. Bond lengths (A) and angles (°) of the hydrogen bonds of {TPPFc₈(H₂O)₂}·5CH₂Cl₂.

Bond lengths											
CuTPPBr ₈ ·2	2CH ₂ Cl ₂		{TPPFc ₈ (H ₂ O) ₂ }·5CH ₂ Cl ₂								
C1-N1	1.379(8)	C1-N1	1.311(17)	C6-N2	1.327(16)	C11-N3	1.289(16)	C16-N4	1.305(16)		
C1-C2	1.452(9)	C1–C2	1.471(19)	C6–C7	1.466(19)	C11-C12	1.493(17)	C16-C17	1.494(17)		
C2–C3	1.355(10)	C2–C3	1.396(18)	C7–C8	1.379(18)	C12–C13	1.317(17)	C17–C18	1.436(16)		
C3–C4	1.440(9)	C3–C4	1.472(18)	C8–C9	1.460(19)	C13–C14	1.488(16)	C18–C19	1.460(18)		
C4-N1	1.372(8)	C4-N1	1.439(17)	C9-N2	1.395(17)	C14–N3	1.401(17)	C19–N4	1.405(16)		
C4–C5	1.422(9)	C4–C5	1.349(17)	C9-C10	1.368(18)	C14-C15	1.371(18)	C19–C20	1.366(18)		
C5–C1B	1.392(9)	C5–C6	1.508(18)	C10-C11	1.507(18)	C15-C16	1.481(17)	C20-C1	1.512(18)		
				I	Bond angles						
N1C1C5A	123.0(6)	N1-C1-C20	116.4(11)	N2-C6-C5	114.3(11)	N3-C11-C10	118.0(11)	N4-C16-C15	117.2(11)		
N1C1C2	107.4(6)	N1C1C2	113.8(11)	N2-C6-C7	113.8(11)	N3-C11-C12	113.0(11)	N4-C16-C17	114.6(10)		
C1-C5A-C6A	122.4(6)	C1-C20-C39	113.6(10)	C6-C5-C21	112.7(9)	C11-C10-C27	112.0(10)	C16-C15-C33	116.4(10)		
C5A-C1-C2	128.7(6)	C2C1C20	129.6(11)	C7–C6–C5	131.9(10)	C10-C11-C12	128.8(10)	C17-C16-C15	128.2(11)		
C1–C5A–C4A	120.0(6)	C1-C20-C19	118.7(11)	C4C5C6	120.0(12)	C9-C10-C11	117.7(11)	C16-C15-C14	117.4(12)		
C4C5C6	117.7(6)	C4-C5-C21	126.3(11)	C9-C10-C27	129.0(12)	C14-C15-C33	124.9(11)	C19–C20–C39	126.7(11)		
C1C2C3	108.0(6)	C1C2C3	105.9(11)	C6–C7–C8	104.6(10)	C11-C12-C13	105.3(10)	C16-C17-C18	102.3(10)		
C1-C2-Br1	127.3(5)	C1C2C45	121.4(11)	C6-C7-C65	123.3(16)	C11-C12-C85	120.8(10)	C16-C17-C105	126.4(10)		
C2C3C4	107.0(6)	C2C3C4	104.6(11)	С7-С8-С9	105.8(11)	C12-C13-C14	106.4(10)	C17-C18-C19	106.2(10)		
C3-C2-Br1	123.8(5)	C3–C2–C45	132.7(12)	C8–C7–C65	132.1(17)	C13-C12-C85	133.9(11)	C18-C17-C105	131.1(11)		
Br1-C3-C4	128.2(5)	C55-C3-C4	122.6(10)	С75-С8-С9	121.3(10)	C95-C13-C14	119.5(10)	C19–C18–C115	122.3(9)		
C2C3Br2	124.2(5)	C2–C3–C55	132.7(11)	C7–C8–C75	132.9(11)	C12–C13–C95	134.1(10)	C17–C18–C115	131.1(11)		
C3–C4–C5	128.4(6)	C3–C4–C5	132.5(12)	C8-C9-C10	131.5(13)	C13-C14-C15	133.5(12)	C18-C19-C20	130.7(12)		
C1-N1-C4	108.0(5)	C1-N1-C4	104.6(10)	C6-N2-C9	104.3(11)	C11-N3-C14	105.5(10)	C16-N4-C19	106.0(10)		
N1-C4-C3	108.9(6)	N1-C4-C3	110.2(10)	N2C9C8	110.9(10)	N3-C14-C13	108.6(10)	N4-C19-C18	110.4(10)		
N1-C4-C5	122.6(6)	N1-C4-C5	115.8(11)	N2-C9-C10	117.0(12)	N3-C14-C15	116.8(10)	N4-C19-C20	117.9(12)		

Table S7. Selected bond lengths (Å) and angles (°) of CuTPPBr₈·2CH₂Cl₂ and {TPPFc₈(H₂O)₂}·5CH₂Cl₂.

Table S8. Bond lengths	(Å) and	angles (°) c	of the CuN4	coordination un	it of CuTPPBr	8·2CH ₂ Cl ₂ .
------------------------	---------	--------------	-------------	-----------------	---------------	--------------------------------------

Bond length	Bond angles ^{a)}	Bond angles ^{a)}			
Cu1-N1 1.968(5)	N1–Cu1–N1A	90.150(15)			
	N1–Cu1–N1B	90.150(15)			
	N1–Cu1–N1C	174.1(3)			
	Cu1–N1–C1	121.6(4)			
	Cu1–N1–C4	124.0(4)			

a) Symmetry codes: "A" = -x + 1, $-y + \frac{1}{2}$, z. "B" = $-y + \frac{3}{4}$, $x - \frac{1}{4}$, $-z - \frac{1}{4}$. "C" = $y + \frac{1}{4}$, $-x + \frac{3}{4}$, $-z - \frac{1}{4}$.

Table S9. Selected torsion angles (°) of CuTPPBr₈·2CH₂Cl₂ and {**TPPFc₈(H₂O)**₂}·5CH₂Cl₂.

Torsion angles										
CuTPPBr ₈ ·2CH ₂ Cl ₂			${\mathbf{TPPFc}_{8}(\mathbf{H}_{2}\mathbf{O})_{2}} \cdot 5CH_{2}Cl_{2}$							
C4-C5-C1B-N1B	-16.1(7)	C19-C20-C1-N1	79.8(15)	C4-C5-C6-N2	- 86.3(14)	C9-C10-C11-N3	83.4(15)	C14-C15-C16-N4	86.3(15)	
		C20-C1-N1-C4	179.8(10)	C5-C6-N2-C9	177.6(9)	C10-C11-N3-C14	178.4(10)	C15-C16-N4-C19	178.8(11)	
		C1-N1-C4-C5	159.5(11)	C6-N2-C9-C10	- 164.3(10)	C11-N3-C14-C15	159.9(11)	C16-N4-C19-C20	-164.5(12)	
		N1-C4-C5-C6	10.7(17)	N2-C9-C10-C11	- 1.6(15)	N3-C14-C15-C16	7.2(17)	N4-C19-C20-C1	0.6(18)	

5.3 β -2,3,7,8,12,13,17,18-Octabromo-meso-5,10,15,20-tetraphenyl(metallo) porphyrins (H₂TArylBr₈ / MTArylBr₈)

() (() () () () () () () () (
Table S10. CSD RefCodes of octabromopoprhyrins together with their chemical structure and MD parameter.				
CSD-				

	RefCode	Chemical structure	MD
	LALRIZ ²⁴	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.424
-	ZALJEB ²⁵	$\begin{array}{c} Br \\ Br \\ C_6F_5 \\ Br \\ C_6F_5 \\ Br \\ B$	0.442
	PESRIO ²⁶	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.464
	PEXHOP ²⁷	$Me \qquad Me \qquad Me \qquad Me \qquad Br \qquad Me \qquad Br \qquad Me \qquad M$	0.490
	SURGUJ ²⁸	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.495

6. Computational Details

The BP86 functional^{37,38} in combination with the TZVP basis set³⁹ was employed for structure optimization for which the ORCA⁴⁰ program package was used. Dispersion forces were considered by an empirical dispersion correction proposed by Grimme.^{41,42} The structure optimization was speeded up by the split resolution of identity approximation (Split-RI-J).⁴³⁻⁴⁶ After structure optimization, Turbomole⁴⁷ was employed with the same basis set and functional as in the calculations with ORCA to obtain nuclear magnetic shielding constants. The multipole accelerated resolution of identity approximation^{43-45,48} (MARI-J) was employed to speed up the single point calculation while NMR shielding was calculated by the gauge including atomic orbital (GIAO) method.⁴⁹ NBO 6.0⁵⁰ as implemented in the Jaguar 9.3 program package⁵¹ was employed to calculate the Wiberg bond index.⁵² BP86 in combination with a 6-31G* basis set^{53,54} for all organic compounds and the LACVP basis set⁵⁵ for Fe was used to obtain the electronic structure analyzed by the NBO program.

7. References

- (1) Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, Pergamon, New York, 3rd ed.; 1988.
- (2) Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.; Korsakoff, L. A. J. Org. Chem. 1967, 32, 476–476.
- (3) Adler, A. D.; Longo, F. R.; Kampas, F.; Kim, J. J. Inorg. Nucl. Chem. 1970, 32, 2443-2445.
- (4) Pfaff, U.; Hildebrandt, A.; Schaarschmidt, D.; Rüffer, T.; Low, P. J.; Lang, H. Organomet. 2013, 32, 6106-6117.
- (5) LeSuer, R. J.; Buttolph, C.; Geiger, W. E. Anal. Chem. 2004, 76, 6395-401.
- (6) Clark, H. C.; Goel, A. B. Inorg. Chim. Acta 1978, 31, L441–L442.
- (7) Shi, B.; Boyle, R. W. J. Chem. Soc., Perkin Trans. 2002, 1, 1397-1400.
- (8) (a) Alben J. O. in *The Porphyrins*, Dolphin, D., Eds.; Academic Press: New York, NY, USA, 1978; 2, 323–345. (b) Feng, Y.;
 Chen, S.; Guo, W.; Zhang, Y.; Liu, G. *J. Electroanal. Chem.* 2007, 602, 115–122.
- (9) Saphier, M.; Yifrah, T.; Zilbermann, I.; Saphier, O.; Shames, A. I.; Froumin, N.; Meyerstein, D.; Guldi, D. J. Porphyrins Phthalocyanines 2012, 16, 1124–1131.
- (10) Wahab, A.; Bhattacharya, M.; Ghosh, S.; Samuelson, A. G.; Das, P. K. J. Phys. Chem. B 2008, 112, 2842–2847.
- (11) Liu, C.; Chen, Q-Y. Eur. J. Org. Chem. 2005, 3680-3686.

- (12) Rosenblum, M.; Woodward, R. B. J. Am. Chem. Soc. 1958, 80, 5443-5449.
- (13) Lehrich, S. W.; Hildebrandt, A.; Rüffer, T.; Korb, M.; Low, P.; Lang, H. Organomet. 2014, 33, 4836-4845.
- (14) Poppitz, E. A.; Hildebrandt, A.; Korb, M.; Schaarschmidt, D.; Lang, H. Z. Anorg. Allg. Chem. 2014, 640, 2809-2816.
- (15) Hildebrandt, A.; Lang, H. Organomet. 2013, 32, 5640-5653.
- (16) Manke, A. -M.; Geisel, K.; Fetzer, A.; Kurz, P. Phys. Chem. Chem. Phys. 2014, 16, 12029-12042.
- (17) Yamamoto, Y.; Yamamoto, A.; Furuta, S-Y.; Horie, M.; Kodama, M.; Sato, W.; Akiba, K-Y.; Tsuzuki, S.; Uchimaru, T.; Hashizume, D.; Iwasaki, F. J. Am. Chem. Soc. 2005, 127, 14540–14541.
- (18) Kakui, T.; Sugawara, S.; Hirata, Y.; Kojima, S.; Yamamoto, Y. Chem. Eur. J. 2011, 17, 7768–7771.
- (19) Yamamoto, Y.; Hirata,Y.; Kodama, M.; Yamaguchi, T.; Matsukawa, S.; Akiba, K-Y.; Hashizume, D.; Iwasaki, F.; Muranaka, A.; Uchiyama, M.; Chen, P.; Kadish, K. M.; Kobayashi, N. J. Am. Chem. Soc. 2010, 132, 12627–12638.
- (20) Sugawara, S.; Kodama, M.; Hirata, Y.; Kojima, S.; Yamamoto, Y. J. Porphyrins Phthalocyanines 2011, 15, 1326–1334.
- (21) CrysAlisPro, Agilent Technologies, Version 1.171.37.35 (release 13-08-2014 CrysAlis171.NET).
- (22) Sheldrick, G. M. Acta Crystallogr., Sect. A: Fundam. Crystallogr. 2008, 64, 112-122.
- (23) Flack, H. D. Acta Crystallogr., Sect. A: Fundam. Crystallogr. 1983, 39, 876.
- (24) Marsh, R. E.; Schaefer, W. P.; Hodge, J. A.; Hughes, M. E.; Gray, H. B.; Lyons, J. E.; Ellis, P. E. Acta Cryst. 1993, 1339–1342.
- (25) Birnbaum, E. R.; Hodge, J. A.; Grinstaff, M. W.; Schaefer, W. P.; Henling, L.; Labinger, J. A.; Bercaw, J. E.; Gray, H. B. *Inorg. Chem.* **1995**, *34*, 3625–3632.
- (26) Bhyrappa, P.; Krishnan, V.; Nethaji, M. J. Chem. Soc. Dalton Trans. 1993, 1901–1906.
- (27) Ochsenbein, P.; Mandon, D.; Fischer, J.; Weiss, R.; Austin, R. N.; Jayaraj, K.; Gold, A.; Terner, J.; Bill, E.; Muther, M.; Trautwein, A. X. Angew. Chem., Int. Ed. 1993, 32, 1437–1439.
- (28) Hu, B.; Li, J. Angew. Chem., Int. Ed. 2015, 54, 10579-10582.
- (29) Grinstaff, M. W.; Hill, M. G.; Birnbaum, E. R.; Schaefer, W. P.; Labinger, J. A.; Gray, H. B. Inorg. Chem. 1995, 34, 4896– 4902.
- (30) Bhyrappa, P.; Purushothaman, B.; Vittal, J. J. J. Porphyrins Phthalocyanines 2003, 7, 682–692.
- (31) Mandon, D.; Ochsenbein, P.; Fischer, J.; Weiss, R.; Jayaraj, K.; Austin, R. N.; Gold, A.; White, P. S.; Brigaud, O.; Battioni, P.; Mansuy, D. *Inorg. Chem.* 1992, *31*, 2044–2049.
- (32) Henling, L. M.; Schaefer, W. P.; Hodge, J. A.; Hughes, M. E.; Gray, H. B. Acta Cryst. 1993, 1743–1747.
- (33) Bhyrappa, P.; Arunkumar, C.; Varghese, B. J. Porphyrins Phthalocyanines 2007, 11, 795-804.
- (34) Spyroulias, G. A.; Despotopoulos, A.; Raptopoulou, C. P.; Terzis, A.; Coutsolelos, A. G. Chem. Commun. 1997, 783-784.
- (35) Bohle, D. S.; Hung, C-H. J. Am. Chem. Soc. 1995, 117, 9584-9585.
- (36) Senge, M. O.; Forsyth, T. P.; Nguyen, L. T.; Smith, K. M. Angew. Chem., Int. Ed. 1994, 33, 2485-2487.

- (37) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
- (38) Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824.
- (39) Schäfer, A.; C. Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829-5835.
- (40) Neese, F. WIREs Comput. Mol. Sci. 2012, 2, 73-78.
- (41) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154101-154104.
- (42) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456-1465.
- (43) Baerends, E. J.; Ellis, D. E.; P. Ros, P. Chem. Phys. 1973, 2, 41-51.
- (44) Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. J. Chem. Phys. 1979, 71, 3396-3402.
- (45) Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Chem. Phys. Lett. 1995, 240, 283-289.
- (46) Neese, F.; J. Comput. Chem. 2003, 24, 1740-1747.
- (47) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. 1989, 162, 165-169.
- (48) Sierka, M.; A. Hogekamp, A.; Ahlrichs, R. J. Chem. Phys. 2003, 118, 9136-9148.
- (49) Schreckenbach, G.; Ziegler, T. J. Phys. Chem. 1995, 99, 606-611.
- (50) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F. Nbo 6.0, University of Wisconsin, Madison, 2013, http://nbo6.chem.wisc.edu/.
- (51) Jaguar; version 9.3; Schrodinger, Inc., New York, NY, 2016.
- (52) Wiberg, K. B. Tetrahedron 1968, 24, 1083-1096.
- (53) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257-2261.
- (54) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654–3665.
- (55) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299-310.