Supporting Information

High proton conductance in nickel(II) complex and its hybrid

membrane

Shuai-Liang Yang^a, Yue-Ying Yuan,^a Fei Ren,^a Chen-Xi Zhang^{ab*}and Qing-Lun Wang^{cd*}

^a College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China

^b Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.

^c Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China

^d College of Chemistry, Nankai University, Tianjin 300071, P. R. China

^{*} Corresponding author. Email: zcx@tust.edu.cn, wangql@nankai.edu.cn

1					
Ni(1)-N(1)	2.106(1)	Ni(1)-N(4)	2.102(1)		
Ni(1)-N(2)	2.061(1)	Ni(1)-N(5)	2.086(1)		
Ni(1)-N(3)	2.079(1)	Ni(1)-N(6)	2.070(1)		
N(2)-Ni(1)-N(1)	78.47(5)	N(5)-Ni(1)-N(3)	169.42(5)		
N(3)-Ni(1)-N(1)	98.05(5)	N(5)-Ni(1)-N(4)	92.72(5)		
N(3)-Ni(1)-N(2)	93.27(5)	N(6)-Ni(1)-N(1)	92.15(5)		
N(4)-Ni(1)-N(1)	176.17(5)	N(6)-Ni(1)-N(2)	168.14(5)		
N(4)-Ni(1)-N(2)	100.21(5)	N(6)-Ni(1)-N(3)	95.24(5)		
N(4)-Ni(1)-N(3)	78.39(5)	N(6)-Ni(1)-N(4)	89.60(5)		
N(5)-Ni(1)-N(1)	90.97(5)	N(6)-Ni(1)-N(5)	78.81(5)		
N(5)-Ni(1)-N(2)	93.96(5)	C(1)-N(1)-Ni(1)	127.28(1)		

Table S1. Selected bond lengths (Å) and angles(°) of 1.

Table S2. Hydrogen bond lengths (Å) and angles (°) for 1.

		1		
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(2)-H(2A)O(6a)	0.82	1.64	2.431(1)	162
O(4)-H(4A)O(13b)	0.82	1.77	2.591(2)	176
O(10)-H(10B)O(7c)	0.83(1)	2.29(2)	2.998(1)	144(2)
O(11)-H(11A)O(9d)	0.86(3)	2.13(3)	2.934(2)	156(2)
O(11)-H(11B)O(8)	0.87(1)	2.07(1)	2.923(1)	165(3)
O(12)-H(12A)O(5e)	0.86(2)	1.98(2)	2.839(2)	171(2)
O(13)-H(13A)O(14f)	0.85(2)	2.22(2)	3.051(2)	165(2)
O(13)-H(13A)O(3)	0.85(2)	2.56(2)	3.121(2)	125(2)
O(13)-H(13B)O(12g)	0.85(2)	1.94(3)	2.775(2)	167(2)
O(14)-H(14A)O(3h)	0.86(2)	2.02(2)	2.754(2)	144(2)
O(14)-H(14B)O(8i)	0.87(2)	2.03(2)	2.902(1)	176(2)
C(7)-H(7)O(1j)	0.93	2.34	3.134(1)	143
C(9)-H(9)O(5k)	0.93	2.58	3.188(2)	123

Symmetry codes: a) -x+1/2, y-1/2, -z+1/2; b) -x+1, -y+2, -z; c) -x, -y+1, -z+1; d) -x+1, -y+1, -z; e) x, y-1, z; f) x, y, z-1; g) x, y+1, z; h) x, y, z+1; i) -x+1, -y+1, -z+1; j) x+1, y, z; k) x+1, y-1, z.

Selected coordination compound	Conductivity	Measurement	Ea	Ref
	$(S \cdot cm^{-1})$	condition	(ev)	
[Ni(2,2'-bpy) ₄](H ₂ SBTC)(H ₂ O) ₅	1.3×10-4	313K, 98%RH	0.17	our
				work
$[Cu(bipy)_2(1,4-BDMS)(H_2O)_{0.5}]_n$	1.2×10 ⁻⁴	363K, 98%RH	0.37	1
${[Cu(pyz)(5-Hsip)(H_2O)_2] \cdot (H_2O)_2}_n$	3.5×10-5	338K, 95%RH	0.35	2
Zn ₃ (IBT) ₂ (H ₂ O) ₂	2.1×10 ⁻⁵	308K, 97%RH	0.14	3
Cu(H ₂ spip)Cl ₂ ·H ₂ O	1.1×10 ⁻²	368K, 97%RH	0.19	4
$K_2(H_2adp)[Zn_2(ox)_3] \cdot 3H_2O$	1.2×10-4	298K, 98%RH	0.45	5
MFM-500(Ni)	4.5×10 ⁻⁴	298K, 98%RH	0.43	6
$[\{In_2(\mu\text{-}OH)_2(SO_4)_4\}\cdot\{(LH)_4\}\cdot nH_2O]_n$	4.4×10 ⁻⁵	303K, 98%RH	0.32	7

Table S3. Proton conduction performances at high RH of some selected coordination compounds

Table S4. Proton conduction properties of some selected coordination compound composite membranes

Selected MOF composite membranes	Conductivity (S·cm ⁻¹)	Measurement condition	Ea (ev)	Ref
1@PVA-5	1.6×10-3	313K, 98% RH	0.78	our
				work
MOF-508@PVDF-55	1.56×10 ⁻⁴	338K, 100% RH	0.17	8
JUC-200@PVA-10	1.3×10-3	323K, 100% RH	0.46	9
Ca-MOF@PVP-50	5.7×10 ⁻⁵	298K, 65% RH	0.54	10
S-MIL-101@CS-4	6.4×10 ⁻²	373K,100% RH	0.17	11
S-UiO-66@GO@SPEEK-10	2.7×10 ⁻¹	343K, 95% RH	0.10	12

Scheme S1. Structure of H₄SBTC ligand.

Fig. S1 Single cell diagram of 1.

Fig. S3 Water vapor adsorption isotherms of 1 (at 25°C).

Fig. S4 The SEM image shows the surfaces of the 1@PVA-8 composite membrane.

Fig. S5 PXRD patterns of pure PVA, 1@PVA composite membranes and 1 ((a) pure PVA, (b) 1@PVA-3, (c) 1@PVA-5, (d) 1@PVA-8, (e) 1).

Fig. S6 FTIR spectra of pure PVA, the composite membranes and **1** ((a) pure PVA, (b) 1@PVA-3, (c) 1@PVA-5, (d) 1@PVA-8, (e) **1**).

Fig. S7 Nyquist plots of 1 under different relative humidity at 298 K.

Fig. S8 (a) Nyquist plots of PVA at different temperature and 98% RH; (b) Arrhenius plot of $Ln(\sigma T)$ against 1000/T of PVA under 98% RH, the red solid line represents the best fit of the date from 298 K to 321 K.

Fig.S9 Nyquist plot of 1@PVA-5 (a) and 1@PVA-8 (b) at 298 K under 98% RH.

References

1. G. Y. Zhang and H. H. Fei, Chem. Commun., 2017, 53, 4156-4159.

2. D. K. Maity, K. Otake, S. Ghosh, H. Kitagawa and D. Ghoshal, Inorg. Chem., 2017, 56,

1581-1590.

3. C. F. Liu, N. Zhao, X.Q. Zou and G. S. Zhu, CrystEngComm, 2018, 20, 3158-3161.

4. M. J. Wei, J. Q. Fu, Y. D. Wang, Y. Zhang, H. Y. Zang, K. Z. Shao, Y. G. Li and Z. M. Su, *CrystEngComm*, 2017, **19**, 7050–7056.

5. M. Sadakiyo, T. Yamada and H. Kitagawa, J. Am. Chem. Soc., 2014, 136, 13166-13169.

6. S. Pili, S. P. Argent, C. G. Morris, P. Rought, V. García-Sakai, I. P. Silverwood, T. L. Easun, M.

Li, M. R. Warren, C. A. Murray, C. C. Tang, S. H. Yang and M. Schroder, *J. Am. Chem. Soc.*, 2016, **138**, 6352–6355.

7. B. Manna, B. Anothumakkool, A. V. Desai, P. Samanta, S. Kurungot and S. K. Ghosh, *Inorg. Chem.*, 2015, **54**, 5366–5371.

8. H. B. Luo, M. Wang, S. X. Liu, C. Xue, Z. F. Tian, Y. Zou and X. M. Ren, *Inorg. Chem.*, 2017, 56, 4169–4175.

9. K. Cai, F. X. Sun, X. Q. Liang, C. Liu, N. Zhao, X. Q. Zou and G. S. Zhu, *J. Mater. Chem. A*, 2017, **5**, 12943-12950.

10. X. Liang, F. Zhang, W. Feng, X. Zou, C. Zhao, H. Na, C. Liu, F. Sun and G. Zhu, *Chem. Sci.*, 2013, 4, 983-992.

11. X. Y. Dong, J. J. Li, Z. Han, P. G. Duan, L. K. Li and S. Q. Zang, *J. Mater. Chem. A*, 2017, **5**, 3464-3474.

12. H. Z. Sun, B. B. Tang and P. Y. Wu, ACS Appl. Mater. Inter., 2017, 9, 26077-26087.